基于WLF方程和陈化理论推导符合时温等效关系的蠕变本构方程,开展不同温度下的试样压缩蠕变试验,拟合得到有机玻璃的压缩蠕变本构关系,应用有限元方法探究深海装备观察窗蠕变变形的时温等效现象。试验结果显示,符合WLF方程的陈化理论蠕变本构关系能较好地描述深海工况下的有机玻璃压缩蠕变行为;外加应力一定时,有机玻璃在4℃时的蠕变应变-时间曲线相当于将40℃时的蠕变应变-时间曲线沿时间轴拉伸9.36倍,该等效关系可为深海服役环境下有机玻璃耐压结构的加速蠕变试验设计提供参考。
Based on the WLF equation and aging theory, the creep constitutive equation conforming to time-temperature equivalent relation was derived. Compressive creep tests of specimens were carried out at different temperatures, and the compressive creep constitutive relation of polymethyl methacrylate(PMMA) was fitted. The time-temperature equivalent phenomenon of creep deformation of deep-sea equipments’ viewport windows was investigated by finite element method (FEM). The experimental results show that the creep constitutive relation of aging theory, which conforms to the WLF equation, can well describe the compressive creep behavior of PMMA under deep deep-sea conditions. When the applied stress is constant, the creep strain-time curve of PMMA at 4℃ is equivalent to 9.36 times of the creep strain-time curve at 40℃ along the time axis. This equivalent relationship can provide a reference for the accelerated creep test design of PMMA pressure structures under deep-sea service environment.
2024,46(17): 49-55 收稿日期:2023-11-6
DOI:10.3404/j.issn.1672-7649.2024.17.009
分类号:U674.941
基金项目:中国科学院冷泉装置前期关键技术攻关项目(LQ-GJ-01)
作者简介:陈薇(1993-),女,硕士,工程师,研究方向为深海装备耐压结构
参考文献:
[1] 陈鹏, 姜旭胤, 等. 锥台形观察窗有机玻璃结构特性分析与优化设计[J]. 舰船科学技术, 2022, 44(22): 32-35.
CHEN Peng, JIANG Xuyi, et al. Structural characteristic analysis and optimization design of plexiglass for conical observing window[J]. Ship Science and Technology, 2022, 44(22): 32-35.
[2] 余文韬, 胡震. 大开口载人潜水器球扇型有机玻璃观察窗有限元分析及试验验证[J]. 舰船科学技术, 2020, 42(19): 78-82.
YU Wentao, HU Zhen. Finite element analysis and test verification of spherical sector acrylic windows of manned submersible with large opening[J]. Ship Science and Technology, 2020, 42(19): 78-82.
[3] STACHIW J D, GRAY K O. Procurement of safe viewports for hyperbaric chambers[J]. Journal of Engineering for Industry, 1971, 93(4): 943.
[4] 何曼君, 陈维孝, 等. 高分子物理[M]. 上海: 复旦大学出版社, 2000.
[5] WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1995, 37: 3701-3707.
[6] 复合固体推进剂单向拉伸应力松弛模量及其主曲线测定方法: QJ 2487-93[S]. 北京: 中华人民共和国航空航天工业部, 1993.
[7] 金日光, 刘薇. 高分子材料应力-时间等效性的考察[J]. 北京化工学院学报(自然科学版), 1994, 21(1): 35-40.
JIN Riguang, LIU Wei. Study on the equivalency between stress and time of polymer materials[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 1994, 21(1): 35-40.
[8] 罗文波, 杨挺青, 等. 非线性粘弹体的时间-温度-应力等效原理及其应用[J]. 固体力学学报, 2001(3): 219-224.
LUO Wenbo, YANG Tingqing, et al. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials[J]. Chinese Journal of Solid Mechanics, 2001(3): 219-224.
[9] 王初红, 罗文波, 等. 非线性粘弹性高分子材料长期蠕变行为的加速测试技术[J]. 高分子材料科学与工程, 2007, 23(2): 218-221+226.
WANG Chuhong, LUO Wenbo, et al. An accelerated test technique for long-term creep behavior of nonlinear viscoelastic polymer[J]. Polymer Materials Science & Engineering, 2007, 23(2): 218-221+226.
[10] 赵培仲, 文庆珍, 等. 时温等效方程的研究[J]. 橡胶工业, 2005, 52(3): 142-145.
ZHAO Peizhong, WEN Qingzhen, et al. Study on time-temperature equivalent equation[J]. China Rubber Industry, 2005, 52(3): 142-145.
[11] 许进升, 杨晓红, 等. 聚合物时温等效模型有限元应用研究[J]. 应用数学和力学, 2015(5): 95-103.
XU Jinsheng, YANG Xiaohong, et al. Finite element application of the time-temperature superposition principle (TTSP) to polymer[J]. Applied Mathematics and Mechanics, 2015(5): 95-103.
[12] 穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990.
[13] Safety standard for pressure vessels for human occupancy: ASME PVHO-1-2019[S]. ASME, 2019.
[14] 陈薇. 深海空间站观察窗蠕变特性研究[D]. 北京: 中国舰船研究院, 2019.