为提高船舶机舱的智能设计水平,提出一种针对于船舶机舱设备布局的智能优化方法。以某船机舱为例,通过分析船舶机舱设备对于机舱内部温度的耐受性、通风需求、以及设备自重对于船舶重心位置的影响,建立船舶机舱设备的分层评分机制,实现设备在机舱内部的分层布置。从设备系统群关系、流通成本、倾斜力矩、吊装需求等6个角度出发对机舱双层布局进行分析并建立数学模型,运用罚函数法处理约束条件,运用自适应粒子群算法求解该数学模型,得出布局方案并进行合理性分析。使用该方法优化之后,同一系统或邻接性较强的设备紧密布置,非邻接性设备分散布置,设备之间的流通成本降低约12%,吊装距离减少约100%,倾斜力矩之和降低约130%。结果分析表明,该方法能有效地解决船舶机舱的布局优化问题,可为解决类似的布局优化问题提供参考。
To enhance the intelligence level of ship engine room design, a smart optimization method is proposed for the layout of ship engine room equipment. For example, taking a certain ship's engine room as an example, a hierarchical scoring mechanism for ship's engine room equipment is established by analyzing the equipment's tolerance to internal temperature, ventilation requirements, and the impact of equipment self-weight on the ship's center of gravity position. This mechanism allows for a layered arrangement of equipment within the engine room. From six perspectives including equipment system grouping relationships, circulation costs, tilting moments, and lifting requirements, an analysis of the double-layer layout of the engine room is conducted, and a mathematical model is established. The penalty function method is used to handle the constraints, and the adaptive particle swarm algorithm is used to solve the mathematical model. The layout plan is obtained and its rationality is analyzed. After optimizing this method, devices within the same system or with strong adjacency are arranged closely, while devices without adjacency are dispersed. The circulation cost between devices is reduced by approximately 12%, the lifting distance is reduced by approximately 100%, and the sum of tilting torques is reduced by approximately 130%。The analysis of the results shows that this method can effectively solve the layout optimization problem of ship cabins and can provide references for solving similar layout optimization problems.
2024,46(17): 69-76 收稿日期:2023-10-20
DOI:10.3404/j.issn.1672-7649.2024.17.012
分类号:U663
基金项目:工业与信息化部智能技术试验船关键技术研究项目(CJ01N20)
作者简介:杨帆(1997-),男,硕士,研究方向为智能设计技术
参考文献:
[1] CAPUTO A C, PELAGAGGE P M, PALUMBO M, et al. Safety-based process plant layout using genetic algorithm[J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 139–150.
[2] ÖLçER A I, TUZCU C, TURAN O. An integrated multi-objective optimisation and fuzzy multi-attributive group decision-making technique for subdivision arrangement of Ro-Ro vessels[J]. Applied Soft Computing. 2006, 6(3): 221–243.
[3] 管伟. 优化机舱综合布置的应用及探讨[J]. 福建交通科技, 2016(5): 101–102+9.
GUAN Wei. Application and discussion on optimization of integrated layout of engine room[J]. Fujian Transportation Science and Technology, 2016(5): 101–102+9.
[4] 周发模. 粒子群算法及其在机舱布置优化的应用研究 [D]. 武汉: 武汉理工大学, 2009.
[5] 黄锐. 基于人工智能技术的船舶机舱设备布局系统的设计[J]. 自动化应用, 2023, 64(17): 4–6.
HUANG Rui. Design of marine engine room equipment layout system based on artificial intelligence technology[J]. Automation Application, 2023, 64(17): 4–6.
[6] 孟祥彬. 基于人因可靠性分析的机舱设备布局优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[7] 崔奥, 黄金娥, 黄祥兵, 等. 基于量子粒子群算法的船舶机舱布局方法[J]. 舰船科学技术, 2022, 44(18): 51–56.
CUI Ao, HUANG Jine, HUANG Xiangbing, et al. Ship engine room layout method based on quantum particle swarm optimization algorithm[J]. Ship Science and Technology, 2022, 44(18): 51–56.
[8] 胡耀, 姜治芳, 熊治国, 等. 基于SLP和遗传算法的容积型船舶内部舱室位置布局设计优化[J]. 中国舰船研究, 2013, 8(5): 19–26.
HU Yao, JIANG Zhifang, XIONG Zhiguo, et al. Optimization of internal cabin layout design for volumetric ships based on slp and genetic algorithm[J]. Chinese Ship Research, 2013, 8(5): 19–26.
[9] 罗云, 唐丽晴. 粒子群蚁群混合优化算法在船舶机舱布局优化上的应用[J]. 舰船电子工程, 2019, 39(10): 156-161.
LUO Yun, TANG Liqing. Application of particle swarm ant colony hybrid optimization algorithm to marine engine room layout optimization[J]. Ship Electronic Engineering, 2019, 39(10): 156-161.
[10] 于广亮. 基于改进SLP和PSO-GA的船舶多甲板舱室布局方法研究 [D]. 大连: 大连理工大学, 2022.
[11] 彭建华, 王岳, 吕峰, 等. 基于SLP和遗传算法的船舶管加工车间设备布局设计[J]. 船舶工程, 2022, 44(10): 15–21+106.
PENG Jianhua, WANG Yue, LV Feng, et al. Equipment layout design of marine pipe processing workshop based on slp and genetic algorithm[J]. Marine Engineering, 2022, 44(10): 15–21+106.
[12] 韩洋. 船舶机舱智能布局优化设计方法研究 [D]. 大连: 大连理工大学, 2016.
[13] 胡耀, 姜治芳, 熊治国, 等. 基于改进型遗传算法的舰船舱室布局优化[J]. 中国舰船研究, 2014, 9(1): 20–30.
HU Yao, JIANG Zhifang, XIONG Zhiguo, et al. Ship cabin layout optimization based on improved genetic algorithm[J]. Research on Chinese Ships, 2014, 9(1): 20–30.
[14] 闫向彤, 张永鑫, 李佩泽, 等. 基于遗传算法的车间布局优化研究[J]. 机械设计与制造工程, 2021, 50(9): 88–92.
YAN Xiangtong, ZHANG Yongxin, LI Peize, et al. Research on optimization of workshop layout based on genetic algorithm[J]. Mechanical Design and Manufacturing Engineering, 2021, 50(9): 88–92.
[15] 徐晓鸣, 邓裕琪, 吴绮萍. 基于SLP和粒子群算法的车间布局优化研究[J]. 机电工程技术, 2020, 49(2): 17–20+98.
XU Xiaoming, DENG Yuqi, WU Yiping. Research on workshop layout optimization based on slp and particle swarm optimization[J]. Mechanical and Electrical Engineering Technology, 2020, 49(2): 17–20+98.
[16] 于彦. 自适应权重混合粒子群算法在PID整定中的应用[J]. 无线通信技术, 2022, 31(1): 15–19.
YU Yan. Application of adaptive weight hybrid particle swarm optimization in pid tuning[J]. Wireless Communication Technology, 2022, 31(1): 15–19.