复合材料具有重量轻、强度高等特点,在舰船结构安全与轻量化领域具有广泛潜在应用价值。本文采用声-固耦合方法建立了水下爆炸冲击波与碳纤维增强环氧树脂基复合材料层合板相互作用数值分析模型,研究了冲击波与复合材料结构相互作用过程,阐明了水下爆炸冲击能量耗散分配机制,验证了声-固耦合渐进损伤分析方法的可靠性。在此基础上,研究了层合板厚度及结构材质对相互作用关系的影响。研究结果表明,爆炸冲击波作用在复合材料层合板上,约31%的冲击波能量以靶板面内损伤和振动的方式耗散掉,约69%的能量在靶板弹性作用下反射回水域中;随着复合材料层合板厚度增加,反射能量的占比逐渐增加,吸收能量占比减小,靶板内部损伤与变形减小;相同水下爆炸冲击载荷作用下,复合材料层合板相对于等质量5A06铝板和Q235钢板具有更优良的抗冲击性能。
Composite materials have excellent characteristics such as lightweight and high strength. They have extensive potential applications in the fields of ship structure safety and lightweight. Using acoustic-structure coupling method to make a numerical analysis model for the interaction between underwater explosive shock wave and carbon fiber-reinforced epoxy resin-based composite laminates. It investigates the interaction between shock wave and composite structure, elucidates the mechanism of underwater explosive energy distribution, and verifies the reliability of the acoustic-structure coupling progressive damage analysis method. On this basis, the influence of laminate thickness and structural materials on the interaction relationship was studied. The research results indicate that when explosive shock waves act on a composite laminate,31% of the shock wave energy distributes through damage and vibration in the target plate, while 69% of the energy reflects back into the water under the elastic effect of the target plate; As the thickness of the composite laminates increases, the proportion of reflected energy gradually increases, while the proportion of absorbed energy decreases, resulting in reduced internal damage and deformation of the plate. Under the same underwater explosive shock loading, the composite laminates exhibit superior impact resistance compared to equally massed 5A06 aluminum and Q235 steel.
2024,46(17): 77-83 收稿日期:2023-10-27
DOI:10.3404/j.issn.1672-7649.2024.17.013
分类号:U663
基金项目:国家自然科学基金项目(11972269);武汉理工大学三亚科教创新园开放基金项目(2021KF0029)
作者简介:郑智午(1998-),男,硕士研究生,研究方向为复合材料冲击损伤
参考文献:
[1] 朱锡, 石勇, 梅志远. 夹芯复合材料在潜艇声隐身结构中的应用及其相关技术研究[J]. 中国舰船研究, 2007(3): 34-39.
ZHU Xi, SHI Yong, MEI Zhiyuan. Research on the application of sandwich composite materials in submarine acoustic stealth structure and its related technologies[J]. Chinese Journal of Ship Research, 2007(3): 34-39.
[2] 钱江, 李楠, 史文强. 复合材料在国外海军舰船上层建筑上的应用与发展[J]. 舰船科学技术, 2015, 37(1): 233-237.
QIAN Jiang, LI Nan, SHI Wenqiang. Application and development of composite materials on superstructure of foreign naval ships[J]. Ship Science and Technology, 2015, 37(1): 233-237.
[3] 张爱锋, 姚苗苗, 甄春博. 改进V型夹层板近场水下爆炸抗冲击性能研究[J]. 舰船科学技术, 2021, 43(7): 13-17.
ZHANG Aifeng, YAO Miaomiao, ZHEN Chunbo. Research on improving the near-field underwater explosion impact resistance of V-shaped sandwich panels[J]. Ship Science and Technology, 2021, 43(7): 13-17.
[4] 王嘉捷, 刘文韬, 张梁, 等. 船用PVC夹芯板在近场水下爆炸作用下的吸能特性[J]. 舰船科学技术, 2022, 44(22): 7-12.
WANG Jiajie, LIU Wentao, ZHANG Liang, et al. The energy absorption characteristics of marine PVC sandwich panels under near-field underwater explosion effects[J]. Ship Science and Technology, 2022, 44(22): 7-12.
[5] MICHELLE S. Marine composite sandwich plates under air and water blasts[J]. Marine structures, 2017, 56: 163-185.
[6] HUANG W, ZHANG W, CHEN T, et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 63-74.
[7] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates[J]. The scientific papers of GI Taylor, 1963, (3): 287-303.
[8] 罗泽立, 周章涛, 毛海斌, 等. 水下爆炸强冲击波与平板结构相互作用的理论分析方法[J]. 高压物理学报, 2017, 3(4): 433-452.
LUO Zeli, ZHOU Zhangtao, MAO Haibin, et al. Theoretical analysis method for the interaction between underwater explosion shock waves and flat plate structures[J]. Chinese Journal of High Pressure Physics, 2017, 3(4): 433-452.
[9] 刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究[J]. 爆炸与冲击, 2022, 42(1): 123-135.
LIU Xiaobo, LI Shuai, ZHANG Aman. Research on improvement of theoretical an numerical calculation methods for wall pressure from underwater explosion shock waves[J]. Explosion an Shock Waves, 2022, 42(1): 123-135.
[10] 贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39(6): 94-102.
JIA Leiming, WANG Shufei, TIAN Zhou. Theoretical calculation methods for the flow field of explosion shock wave reflection[J]. Explosion an Shock Waves, 2019, 39(6): 94-102.
[11] 李海涛, 朱石坚, 陈志坚, 等. 全入射角度下平板冲击波的壁压载荷及局部空化特性[J]. 爆炸与冲击, 2014, 34(3): 354-360.
LI Haitao, ZHU Shijian, CHEN Zhijian, et al. Wall pressure load and local cavitation characteristics of flat pate under oblique incident shock waves[J]. Explosion an Shock Waves, 2014, 34(3): 354-360.
[12] PENG R, JIAQI Z, et al. Experimental investigation on dynamic failure of carbon/epoxy laminates under underwater impulsive loading[J]. Marine Structures, 2018, 59: 285-300.
[13] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041.