采用管路隔振器是降低船舶管路系统振动噪声传递的有效手段,但舰船管路比较复杂需要根据管路规格设计系列化隔振器。如何有效地预报不同规格管路隔振器在实际使用过程中的性能是管路隔振器系列化设计亟待解决的问题。为此本文通过橡胶拉伸试验拟合橡胶超弹性本构参数,利用有限元方法对多款隔振器性能(静变形和固有频率)进行仿真计算,并由试验对计算结果进行验证。结果表明,设计的隔振器数值仿真与试验结果误差率均低于10%,证明该参数能有效预报多规格隔振器性能。本文结果可为舰船管路隔振器系列化设计提供指导。
The use of pipeline vibration isolator is an effective means to reduce the transmission of vibration and noise of the ship pipeline system, but the ship pipeline is more complex need to be designed according to the specifications of the pipeline series model vibration isolator. How to effectively forecast the performance of different specifications of pipeline vibration isolators in the actual use of the process is the design of pipeline vibration isolators urgently need to solve the problem. To this end, this paper fits the rubber hyperelasticity intrinsic parameters through rubber tensile test, simulates the performance of vibration isolators (static deformation and natural frequency) by using the finite element method, and verifies the results of the calculations by tests. The results show that the error rate of both numerical simulation and experimental results of the designed vibration isolator is less than 10%. It is proved that this parameter can effectively predict the performance of multi-specification vibration isolators. The research in this paper provides guidance for the series design of ship pipeline vibration isolators.
2024,46(17): 91-95 收稿日期:2024-5-15
DOI:10.3404/j.issn.1672-7649.2024.17.015
分类号:TB535
作者简介:王翔峰(1999-),男,硕士研究生,研究方向为减振降噪及声学超材料
参考文献:
[1] 朱石坚, 何琳. 船舶机械振动控制[M]. 北京: 国防工业出版社, 2006: 4-5.
[2] 王集. 压剪式橡胶隔振器力学特性研究[D]. 成都: 西南交通大学, 2015.
[3] 徐昱根, 柳琳琳, 沈双全, 等. 隔振橡胶材料超弹性本构模型适用性研究[J]. 机械强度, 2023, 45(6): 1332-1339.
[4] FATT M, XIN O. Integral-based constitutive equation for rubber at high strain rates[J]. International Journal of Solids & Structures, 2007, 44(20): 6491-6506.
[5] 魏家威, 石霄鹏, 冯振宇. 应变率相关的橡胶本构模型研究[J]. 高压物理学报, 2022, 36(2): 107-117.
[6] 王莹, 李勤, 霍英妲, 等. 氟硅橡胶超弹性本构模型评估与选取[J]. 化工新型材料, 2023, 51(S2): 322-327.
[7] 刘金才, 王鹏, 王雯霏, 等. 某橡胶隔振器动静态性能计算及试验研究[J]. 材料开发与应用, 2022, 37(1): 33-38.
[8] 金著, 赵应龙, 杨雪. 舰用隔振橡胶超弹性力学本构模型研究[J]. 船舶力学, 2023, 27(1): 144-152.
[9] 张晶, 谷高全, 丰少伟. 气囊隔振器刚度特性仿真分析和试验研究[J]. 海军工程大学学报, 2023, 35(2): 31-37.
[10] 何小静. 橡胶隔振器静态特性计算与建模方法的研究[D]. 广州: 华南理工大学, 2012.
[11] MOONEY M. A theory of large elastic deformation[J]. Journal of Applied Physics, 1940, 11: 582-592
[12] YEOH O H. Characterization of elastic properties of carbon black-filled rubber vulcanizates[J]. Rubber Chemistry and Technology, 1990, 63(5): 792-805
[13] 潘孝勇. 橡胶隔振器动态特性计算与建模方法的研究[D]. 杭州: 浙江工业大学, 2009.
[14] 李树虎, 贾华敏, 李茂东, 等. 超弹性体本构模型的理论和特种试验方法[J]. 弹性体, 2011, 21(1): 58-64.
[15] B C DUNCAN. Test methods for determining hyperelastic properties of flexible adhesives[Z]. American: National Physical Laboratory, 1999.
[16] 王利荣, 吕振华, Hagiwara Ichiro. 橡胶隔振器有限元建模技术及静态弹性特性分析[J]. 汽车工程, 2002(6): 480-485.