推进轴系振动会造成其位移,由此影响舰船螺旋桨推进轴系的稳定性和可靠性,本文针对此问题,提出舰船螺旋桨推进轴系多维耦合振动自适应控制方法。取基座振动为观测点,采用前馈式控制方法控制轴系纵向维度振动;设计并联电磁执行器,抑制螺旋桨区域将受到周频力、叶频力以及频力叠加造成的周期性扰动力影响所形成的横向维度振动;将纵向维度振动与横向维度振动控制参数作为模糊PID控制算法的输入,控制器会根据这些输入以及预设的控制规则,自动调整其控制参数,以达到对多维耦合振动的最佳控制效果。实验结果显示,该方法纵向振动抑制水平达到15 dB以上,月内位移降低7 mm,说明该方法可提高推进轴系工作过程的稳定性和可靠性。
The vibration of the propulsion shaft system can cause displacement, which affects the stability and reliability of the ship propeller propulsion shaft system. To address this issue, a multi-dimensional coupled vibration adaptive control method for the ship propeller propulsion shaft system is proposed. Taking the base vibration as the observation point, a feedforward control method is used to control the longitudinal vibration of the shaft system. Design parallel electromagnetic actuators to suppress lateral vibrations in the propeller area caused by cyclic forces, blade frequency forces, and periodic disturbances caused by frequency force superposition. The longitudinal and transverse vibration control parameters are used as inputs for the fuzzy PID control algorithm. The controller will automatically adjust its control parameters based on these inputs and preset control rules to achieve the best control effect on multi-dimensional coupled vibration. The experimental results show that the longitudinal vibration suppression level of this method reaches over 15 dB, and the monthly displacement is reduced by 7 mm, indicating that this method can improve the stability and reliability of the propulsion shaft system working process.
2024,46(17): 96-100 收稿日期:2024-5-6
DOI:10.3404/j.issn.1672-7649.2024.17.016
分类号:TP24
基金项目:江苏省职业教育智能焊接技术技艺技能传承创新平台项目(202211)
作者简介:张丽娜(1986-),女,讲师,研究方向为机械制造工艺
参考文献:
[1] 田佳彬, 黄自杰, 王娟, 等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击, 2022, 41(24): 97-103+149.
TIAN Jiabin, HUANG Zijie, WANG Juan, et al. A study on vibration reduction of ship propulsion shafting based on a particle damper[J]. Journal of Vibration and Shock, 2022, 41(24): 97-103+149.
[2] ERDI Gülbahe, ELIK M. Frequency-based adaptive PPF controller for vibration reduction of a helicopter shell body[J]. Journal of Aerospace Engineering, 2023, 36(3): 4023003.1-4023003.9.
[3] 韩金昌, 李彦, 张能, 等. 电磁轴承支承的船舶推进轴系纵向振动变刚度控制方法研究[J]. 推进技术, 2023, 44(9): 274-281.
HAN Jinchang, LI Yan, ZHANG Neng, et al. Variable stiffness control method of longitudinal vibration of ship propeller-shafting supported by active magnetic bearings[J]. Journal of Propulsion Technology, 2023, 44(9): 274-281.
[4] 祁立波, 周瑾, 余越, 等. 磁轴承在船舶推进轴系振动控制中的应用现状与展望[J]. 船舶力学, 2022, 26(3): 448-459.
QI Libo, ZHOU Jing, YU Yue, et al. Research progress on vibration control of ship propulsion system based on magnetic bearing[J]. Journal of Ship Mechanics, 2022, 26(3): 448-459.
[5] 张柳柳, 钱承, 华长春, 等. 基于耦合反步法的轧机垂扭耦合振动控制策略研究[J]. 自动化学报, 2023, 49(12): 2569-2581.
ZHANG LiuLiu, QIAN Cheng, HUA ChangChun, et al. The control strategy of vertical torsional coupling vibration of rolling mill based on coupled backstepping method[J]. Acta Automatica Sinica, 2023, 49(12): 2569-2581.
[6] 巫頔, 谢溪凌, 张志谊. 用于推进轴系振动分析的改进数值组装法[J]. 振动与冲击, 2022, 41(15): 99-104.
WU Di, XIE Xiling, ZHANG Zhiyi. Improved numerical assembly method for vibration analysis of propulsion shafting[J]. Journal of Vibration and Shock, 2022, 41(15): 99-104.
[7] 黄修长, 苏智伟, 郑智伟, 等. 推进轴系纵向振动负刚度动力吸振器试验研究[J]. 中国舰船研究, 2023, 18(2): 227-234.
HUANG Xiuchang, SU Zhiwei, ZHENG Zhiwei, et al. Experimental research on dynamic vibration absorber with negative stiffness for longitudinal vibration control of propulsion shafting system[J]. Chinese Journal of Ship Research, 2023, 18(2): 227-234.
[8] 周慧慧, 李天匀, 朱翔, 等. 艉轴承刚度等效形式对轴系横向振动特性的影响[J]. 中国舰船研究, 2023, 18(1): 231-239.
ZHOU Huihui, LI Tianyun, ZHU Xiang, et al. Influence of equivalent stiffness form from stern bearing to transverse vibration of shafting[J]. Chinese Journal of Ship Research, 2023, 18(1): 231-239.