以最大程度保障舰船稳定运行为目标,展开舰船电力推进系统的分析与仿真研究,依据舰船电力推进系统结构组成,构建多种组成部分的数学模型,基于Matlab-Simulink仿真分析软件进行舰船电力推进系统模拟和计算,分析其在不同工况下的性能表现。仿真分析结果显示,直接正车启动表现出较快的响应速度,但螺旋桨转矩过载严重。相比之下,分级正车启动虽然启动过程相对较长,但螺旋桨转矩和舰船速度的变化更为平稳。突加负载工况下,本文方法表现出较好的性能,能够快速适应负载变化,调节时间短,且电机电流波动小,有利于保障电力推进系统的稳定运行。航速变化工况下,波动幅度和稳态误差均较小,具有较高的稳定性和控制精度。
With the goal of ensuring the stable operation of ships to the greatest extent possible, the analysis and simulation research of ship electric propulsion system is carried out. Based on the structural composition of ship electric propulsion system, mathematical models of various components are constructed. Matlab Simulink simulation analysis software is used to simulate and calculate the ship electric propulsion system, and its performance under different working conditions is analyzed. The simulation analysis results show that direct starting of the vehicle exhibits a fast response speed, but the propeller torque overload is severe. In contrast, although the starting process of the graded main engine is relatively long, the changes in propeller torque and ship speed are more stable. Under sudden load conditions, the method proposed in this paper exhibits good performance, can quickly adapt to load changes, has a short adjustment time, and has small motor current fluctuations, which is conducive to ensuring the stable operation of the electric propulsion system. Under the condition of changing speed, the fluctuation amplitude and steady-state error are small, and it has high stability and control accuracy.
2024,46(17): 116-120 收稿日期:2024-4-16
DOI:10.3404/j.issn.1672-7649.2024.17.019
分类号:U665
作者简介:师光飞(1979-),男,硕士,副教授,研究方向为船舶电子电气技术与自动化
参考文献:
[1] 刘先越, 胡静, 吴晓阳, 等. 基于舰艇电力推进系统的永磁同步电机控制策略研究[J]. 江苏科技大学学报(自然科学版), 2023, 37(2): 75-81.
LIU Xianyue, HU Jing, WU Xiaoyang, et al. Research on control strategy of permanent magnets synchronous motor based on ship electric propulsion system[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2023, 37(2): 75-81.
[2] 廖林豪, 高海波, 林治国, 等. 恶劣海况下的船舶电力推进系统控制策略仿真[J]. 大连海事大学学报, 2020, 46(1): 57-65.
LIAO Linhao, GAO Haibo, LIN Zhiguo, et al. Simulation of control strategy for marine electric propulsion system under rough sea conditions[J]. Journal of Dalian Maritime University, 2020, 46(1): 57-65.
[3] 周坤欣, 商迪, 林叶锦, 等. 电力推进船舶仿真及能效优化方法[J]. 中国航海, 2022, 45(3): 123-128.
ZHOU Kunxin, SHANG Di, LIN Yejin, et al. Simulation of electrically-propelled ships and its energy efficiency optimization[J]. Navigation of China, 2022, 45(3): 123-128.
[4] 朱昱雯, 肖健梅, 王锡淮. 基于改进SHADE算法的船舶电力系统推力分配[J]. 中国舰船研究, 2020, 15(4): 173-182.
ZHU Yuwen, XIAO Jianmei, WANG Xihuai. Hrust distribution of marine power system based on improved SHADE algorithm[J]. Chinese Journal of Ship Research, 2020, 15(4): 173-182.
[5] 李增光, 赵辉, 周宁. 短路冲击作用下电力推进装置扭振计算与分析[J]. 中国舰船研究, 2020, 15(6): 60-65.
LI Zengguang, ZHAO Hui, ZHOU Ning. Calculation and analysis of torsional vibration of electrical propulsion system under a short-circuit-induced impulse load[J]. Chinese Journal of Ship Research, 2020, 15(6): 60-65.
[6] BAI H , YU B . Position estimation of fault-tolerant permanent magnet motor in electric power propulsion ship system[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17(6): 890-898.
[7] 孙志豪, 黄文焘, 卫卫, 等. 船舶大功率电力推进虚拟同步电机控制方法[J]. 电力自动化设备, 2022, 42(11): 106-113.
SUN Zhihao, HUANG Wentao, WEI Wei, et al. Virtual synchronous machine-based control method for high power electric propulsion of ship[J]. Electric Power Automation Equipment, 2022, 42(11): 106-113.
[8] 谢嘉令, 施伟锋, 兰莹, 等. 基于幂次指数趋近律的船舶电力推进控制研究[J]. 计算机仿真, 2022, 39(6): 279-283.
XIE Jialing, SHI Weifeng, LAN Ying, et al. Research on sliding mode control of ship electric propulsion based on power exponent reaching law[J]. Computer Simulation, 2022, 39(6): 279-283.