为了解决弱通信条件及存在动态不确定性障碍物条件下的多UUV协同路径规划问题,本文提出KM最优匹配与PSO寻优方法相结合的UUV协同路径规划算法框架,无需依赖实时的水下通信链路,采用集中式分配、分布式规划执行的方法实现UUV集群按照既定任务需求生成满足UUV角速度、速度等运动学约束条件的可行轨迹,并采用制导控制与规划控制分层解耦方式,设计基于虚拟点制导法的轨迹跟踪算法,解决UUV的轨迹跟踪控制问题。此外,结合势场法与一致性控制实现UUV集群的动态避障,通过仿真结果分析,所提方法可以有效解决多UUV集群中的协同目标分配与同时到达控制问题。
In order to solve the problem of multi-UUVs cooperative path planning under weak communication conditions, this manuscript proposes a UUV cooperative path planning algorithm combining KM optimal matching and PSO optimization method. This method does not need to rely on real-time underwater communication, and can generate feasible trajectories meet the kinematic constraints such as angular velocity and velocity of UUV according to the mission requirements. In addition, trajectory tracking algorithm based on the combination of virtual point and guidance method has been designed, and the hierarchical decoupling method has been used to solve the trajectory tracking control problem of UUV. Moreover, the artificial potential field method has been introduced to realize the dynamic obstacle avoidance of UUVs. Through the analysis of simulation results, the proposed method can effectively solve the problem of cooperative target allocation and simultaneous arrival control in multi-UUVs.
2024,46(17): 121-126 收稿日期:2023-10-24
DOI:10.3404/j.issn.1672-7649.2024.17.020
分类号:TP242
作者简介:曹宏涛(1978-),男,工程师,研究方向为舰船配套
参考文献:
[1] 张亚军. 大型AUV及其水面侦察技术浅析[J]. 数字海洋与水下攻防, 2023, 6(4): 406-412.
[2] 任奕. 美国和俄罗斯大型无人潜航器现状及发展趋势[ J ]. 舰船电子工程, 2023, 43(2) : 10–13.
[3] 徐同乐, 刘方, 肖玉杰, 等. 国外无人反水雷装备及技术发展[J]. 兵工学报, 2022, 43(2): 64-70.
[4] MARCIN M , ADAM S , JERZY Z , et al. Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks[J]. Journal of Marine Engineering & Technology, 2017, 16: 227–237
[5] 吴校生. 水下微小无人机集群发展综述[J]. 数字海洋与水下攻防, 2020, 3(3): 192-197.
[6] FRATANTONI D M, HADDOCK S H D. Introduction to the autonomous ocean sampling network (AOSN-II) program[J]. Deep Sea Research. 2009, 56(3–5): 61–61.
[7] ABREU P, ANTONELLI G, ARRICHIELLO F, et al. Widely scalable mobile underwater sonar technology: An overview of the H2020 WiMUST project[J]. Marine technology society journal, 2016, 50(4): 42-53.
[8] 张少泽. 无人艇组网通信与编队控制研究[D]. 武汉: 华中科技大学, 2021.
[9] LI H, LIU Q, FENG G, et al. Leader-follower consensus of nonlinear time-delay multi-agent systems: A time-varying gain approach[J]. Automatica, 2021, 126(11): 109444.
[10] 吴洁, 郝子康, 李明昊, 等. 多无人海洋运载器协同编队任务分配方法[J]. 中国航海, 2023, 46(2): 144-151+160.
[11] 柳毅, 佟明安. 匈牙利算法在多目标分配中的应用[J]. 火力与指挥控制, 2002(4): 34-37.
[12] MASOUD D, SHAHRAM J, ALI H. A PSO-based multi-robot cooperation method for target searching in unknown environments[J]. Neurocomputing, 2016(177): 62-74.
[13] SABETGHADAM B, CUNHA R, PASCOAL A. Trajectory generation for drones in confined spaces using an ellipsoid model of the body[J]. IEEE Control Systems Letters, 2021(99): 1-10.
[14] MAHMOUDZADEH S, ABBASI A, YAZDANI A, et al. Uninterrupted path planning system for Multi-USV sampling mission in a cluttered ocean environment[J]. Ocean engineering, 2022(15): 254-266.
[15] XIU Y, LI D, ZHANG M, et al. Finite-time sideslip differentiator-based LOS guidance for robust path following of snake robots[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 239-253.
[16] QIN L, JIANG Z P. Flocking control of multi-agent systems with application to nonholonomic multi-robots[J]. IFAC Proceedings Volumes, 2008, 41(2): 9344–9349.