舰船发射的主动声呐脉冲信号声源级高,频带窄,信噪比高,利用这些特点,可以比较精确地测量声呐脉冲信号的方位和频率信息从而有利于目标运动要素解算。本文针对发射主动脉冲的水下目标,提出一种基于主动声呐脉冲方位的多普勒解要素方法,首先估计主动脉冲信号时间位置及频率,在此基础上利用非线性回归的方法,将每一个脉冲的时刻、方位、频率以及本平台相应时刻的速度和位置等要素组成的多维向量,视作样本空间中的一个点,根据各要素间的函数关系,进行非线性拟合,从而获得目标运动要素的估计值。实测数据验证表明,提出的频率估计方法精度满足目标运动分析的要求;仿真验证了基于非线性回归的脉冲方位-频率目标运动分析算法整体的有效性。
The active sonar pulse signal emitted by ships has high sound source level, narrow frequency band, and high signal-to-noise ratio. By utilizing these characteristics, the azimuth and frequency information of the sonar pulse signal can be accurately measured, which is conducive to the calculation of target motion elements. This article proposes a Doppler method for calculating target elements of underwater targets that emit active pulses based on the azimuth of active sonar pulses. Firstly, estimate the time position and frequency of the active pulse signal. Based on this, use nonlinear regression method to treat the multidimensional vector composed of the time, azimuth, frequency of each pulse, as well as the velocity and position of the corresponding time on the platform, as a point in the sample space. According to the functional relationship between each element, perform nonlinear fitting to obtain the estimated value of the target motion element. The verification of actual measurement data shows that the accuracy of the proposed frequency estimation method meets the requirements of target motion analysis. The simulation verifies the overall effectiveness of the pulse azimuth frequency target motion analysis algorithm based on nonlinear regression.
2024,46(17): 132-136 收稿日期:2023-11-17
DOI:10.3404/j.issn.1672-7649.2024.17.022
分类号:TN911.7
作者简介:杨刚(1988-),男,博士,副教授,研究方向为水下目标被动定位
参考文献:
[1] PASSERIEUX J M, PILLON D, BLANC-BENON, et al. Target motion analysis with bearings and frequencies measurements via instrumental variable estimator[J]. Proc Int. Conf. Acoustics Speech and Signal Processing, 1989, 2(4): 2645-2648.
[2] CHAN Y T, RUDNICKI S W. Bearings –only and Doppler-bearing tracking using instrumental variables[J]. IEEE trans. , aerospace, electronic system, 1992, 1(28): 1077-1083
[3] JOHANNESSON P, HOLST J, ROSENQVIST A, et al. On kalman filtering in Doppler-bearing tracking[C]// Procession Conference. Undersea Denfence Technology. London, 1994: 433-440.
[4] ROSENQVIST A. Passive Doppler-bearing tracking using a pseudo-linear estimator[J]. IEEE Journal of Oceanic Engineering, 1995, 1(20): 114-118.
[5] JAUFFRET C, PILLON D. Observability in passive target motion analysis[J]. IEEE transations on , Aerospace, Electronic System, 1996, 32(4): 1290-1300.
[6] 胡青, 宫先仪. 方位/频率目标运动分析实验研究[J]. 声学学报, 2005, 30(2): 120-124.
[7] 李龙, 鞠阳, 燕雪峰. 一种多普勒频移优化搜索的目标运动分析算法[J]. 计算机技术与发展, 2015, 25(7): 45-48.
[8] 占荣辉, 王玲, 万建伟. 基于方位角和多普勒的机动目标无源定位跟踪可观测条件[J]. 国防科技大学学报, 2007, 29(1): 54-58.
[9] 刘健, 刘忠, 玄兆林. 基于方位频率测量的水下被动目标运动分析算法[J]. 舰船科学技术, 2006, 28(3): 66-69.
LIU Jian, LIU Zhong, XUAN Zhaolin. The research of underwater passive TMA algorithm with bearings and frequencies measurements[J]. Ship Science and Technology, 2006, 28(3): 66-69.
[10] 程善政, 陈双, 何心怡. 一种目标运动要素纯方位解算方法. 舰船科学技术, 2020, 42(12): 129-132.
CHENG Shanzheng, CHEN Shuang, HE Xinyi A pure azimuth solution method for target motion element. Ship Science and Technology, 2020, 42(12): 129-132.
[11] YANG G, XING B, et al. High precision Doppler estimation method for LFM signals based on chirplet transform [C]//2022 IEEE 5th Advanced Information Management Communicates Electronic and Automation Control Conference. ChongQing, 2022: 1089-1092.