为掌握喷水推进器进水流道综合特性,以同一喷水推进泵所对应的3型进水流道为对象,分别分析不同进水流道在结构、水力性能和声传播特性上的差异,并针对不同进水流道截面变化对声传播特性的影响进行分析。从流道的圆弧段出口到倾斜段的进口,2型流道截面面积均呈现先减小后增大趋势,1型流道的截面面积基本不变。从水力性能角度讲,3型流道性能没有显著差别;从声传播特性上讲,变截面流道在整个分析频段内要优于等截面流道。最后文中仅以流道圆弧段和倾斜段为分析对象,分析不同参数变化对声传播特性的影响,计算结果表明流道倾角对声传播特性影响较大。
In order to master the synthetical performance of waterjet inlet duct, the differences in geometry, hydraulic performance and sound propagation characteristic of three inlet ducts used for the same waterjet pump are analyzed, besides that the influence of cross-section variety corresponding to different inlet ducts on sound transmission is also analyzed . The section area of two ducts firstly become smaller and then become bigger from the outlet of circular-arc segment to the inlet of incline segment, while the section area is the same for the third duct. There is no significant difference between three inlet ducts in hydraulic performance; In terms of sound propagation characteristics, the variable cross-section duct is superior to the constant cross-section duct throughout the entire analysis frequency range. At last, the circular section and incline section of the duct is taken as the object to analyze the influence of different parameters on sound propagation characteristics. The calculation results show that the incline angle of inlet duct has notable influence on the sound propagation characteristic.
2024,46(18): 9-14 收稿日期:2023-12-7
DOI:10.3404/j.issn.1672-7649.2024.18.002
分类号:U664.33
基金项目:国防装备预研基金资助项目(41410030102)
作者简介:付建(1985-),男,博士,讲师,研究方向为舰艇推进器声场分析与测试
参考文献:
[1] 张富毅, 吴钦, 赵晓阳, 等. 基于响应面方法的喷水推进器进水流道多目标优化[J]. 兵工学报, 2020, 4(10): 2071–2080.
ZHANG Fuyi, WU Qin, ZHAO Xiaoyang, et al. Multi-objective optimization of inlet duct of water-jet propulsion based on response surface method[J]. Acta Armamentarii, 2020, 4(10): 2071–2080.
[2] 史俊, 冯学东, 李光琛, 等. 进口长度对船舶喷水推进器进水流道性能的影响[J]. 船海工程, 2016, 45(6): 81–84.
[3] 黄仁芳, 王一伟, 罗先武, 等. 平进口喷水推进器进水流道多目标优化设计[J]. 华中科技大学学报(自然科学版), 2021, 49(10): 109-114.
HUANG Renfang, WANG Yiwei, LUO Xianwu, et al. Multi-objective optimization design of the flush-type intake duct for a waterjet propulsion system[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2021, 49(10): 109-114.
[4] 许慧丽, 邹早建. 喷水推进器进流方向对流道内流场的影响数值研究[J]. 水动力学研究与进展(A辑), 2018, 33(2): 181-187.
XU Huili, ZOU Zaojian. Numerical study on the effects of inflow directions on the flow field in a waterjet duct[J]. Journal of Hydrodynamics, 2018, 33(2): 181-187.
[5] 靳栓宝, 王永生, 丁江明, 等. 混流式喷水推进泵三元设计与数值试验[J]. 哈尔滨工程大学学报, 2012, 33(10): 1223-1227.
JIN Shuanbao, WANG Yongsheng, DING Jiangming, et al. Three-dimensional design and numerical experiment of mixed-flow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227.
[6] 谈明高, 胡胜, 吴贤芳, 等. 基于流动诱导噪声的喷水推进泵进水流道优化[J]. 华中科技大学学报(自然科学版), 2023(6): 1-7.
TAN Minggao, HU Sheng, WU Xianfang, et al. Optimization of intake duct of water-jet pump based on flow induced noise[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2023(6): 1-7.
[7] STREK T. Finite element modeling of sound transmission loss in reflective pipe. In: David Moratal. Finite element analysis[M]. Croatia: InTech, 2010: 663-684.
[8] 付建, 王永生, 靳栓宝, 等. 喷水推进器进水流道的声传播特性分析[J]. 船舶力学, 2015, 19(8): 994-1000.
FU Jian, WANG Yongsheng, JIN Shuanbao, et al. Sound propagation characteristic analysis of waterjet duct[J]. Journal of Ship Mechanic, 2015, 19(8): 994-1000.