对KCS船在顶浪规则波中的型线优化开展研究。采用径向基函数方法对船体型线进行变形,使用SHIPFLOW中的全非线性的时域边界元方法水动力性能求解器对阻力性能进行预报,利用拉丁超立方采样方法和Kriging近似模型以减少水动力性能计算,结合多岛遗传算法以船体在1.15倍船长的顶浪规则波的阻力为优化目标进行优化。计算结果表明优化后的船型相比于原船总阻力减少了4.48%,波浪增阻系数减少了18.08%。
A study is conducted to optimize the KCS′s hull design in regular head waves. The transformation of the hull lines is achieved using the radial basis function method. The hydrodynamic performance solver in SHIPFLOW, employing the fully nonlinear time-domain boundary element method, is utilized to predict the resistance. To reduce the computational resources required for hydrodynamic performance calculations, Latin hypercube sampling method and Kriging approximation model are used. Furthermore, multi-island genetic algorithm was integrated to reduce the resistance in regular head waves with a wavelength equivalent to 1.15 times of the ship′s length. The results of the calculations show a 4.48% reduction in the total resistance of the optimized ship, along with an 18.08% decrease in the added resistance coefficient as compared to the original ship.
2024,46(18): 49-53 收稿日期:2023-11-12
DOI:10.3404/j.issn.1672-7649.2024.18.008
分类号:U661.31
作者简介:楼沈韬(1999-),男,硕士研究生,研究方向为船舶水动力性能计算及优化
参考文献:
[1] GERRITSMA J, BEUKELMAN W. Analysis of the resistance increase in waves of a fast cargo ship[J]. International Shipbuilding Progress, 1972, 19(217): 285-293.
[2] 刘鑫旺, 万德成. 豪华邮轮多航速兴波阻力的船型优化[J]. 中国舰船研究, 2020, 15(5): 1-10, 40.
[3] YIN X, LU Q, LU Y, et al. Hydrodynamic optimization of foreship hull-form using contrastive optimization algorithms[J]. Journal of Coastal Research, 2021, 37(5): 1063-1078.
[4] 魏斯行, 马宁, 顾解忡, 等. 基于阻力和伴流不均匀度的多用途船型线优化[J]. 舰船科学技术, 2021, 43(5): 24-28.
WEI Sihang, MA Ning, GU Xiechong, et al. Hull optimization of multipurpose ship based on resistance and wake non-uniformity[J]. Ship Science and Technology, 2021, 43(5): 24-28.
[5] FENG B, ZHOU H, MA C. Research on hull form optimization of KCS ship based on NM theory[C]//The 32nd International Ocean and Polar Engineering Conference. OnePetro, 2022.
[6] 王超, 饶然, 郑锐聪. 基于CFD的船体球首线型水动力性能优化研究[J]. 广东造船, 2022, 41(2): 29-31+28.
[7] 沈冠之, 冯君, 郑安燃, 等. 基于修正函数法的双燃料散货船船型优化[J]. 舰船科学技术, 2022, 44(10): 6-9.
SHEN Guanzhi, FENG Jun, ZHENG Anran, et al. Research on the optimization of a bulk carrier based on the modified function method[J]. Ship Science and Technology, 2022, 44(10): 6-9.
[8] SANADA Y, SIMONSEN C, OTZEN J, et al. Experimental data for KCS added resistance and ONRT free running course keeping/speed loss in head and oblique waves[C]//Numerical Ship Hydrodynamics: An Assessment of the Tokyo 2015 Workshop. Springer International Publishing, 2021: 61-137.
[9] BUHMANN M D . Radial Basis Functions: Theory and Implementations[M]. 2003.
[10] KJELLBERG M, JANSON C E, CONTENTO G. Nested domains technique for a fully-nonlinear unsteady three-dimensional boundary element method for free-surface flows with forward speed[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2011: ISOPE-I-11-495.
[11] KJELLBERG M, CONTENTO G, JANSON C E. A fully nonlinear potential flow method for three-dimensional body motions[C]//NAV 2012 17th International Conference on Ships and Shipping Research. Mario Maestro, Ignazio Crivelli Visconti, Gianfranco Damilano, 2012: 117-118.
[12] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
[13] METHERON G. Principles of geostatistics, economic geology[J]. Economic Geology, 1963, 58(8): 1246-1266.
[14] 赵德建, 王延奎, 周平等. 基于多岛遗传算法的二维翼型吸气减阻优化[J]. 北京航空航天大学学报, 2015, 41(5): 941-946.
[15] 尹含. 基于势流及粘流CFD的船舶波浪增阻研究[D]. 大连: 大连海事大学, 2021.
[16] 万超. 基于 SHIPFLOW 的 KCS 船型兴波阻力数值计算[J]. 中国水运, 2017(5): 39-40.