为了研究潜器水下拖曳系统各参数对操纵运动响应的影响,采用缆索动力学数值仿真方法对拖曳系统的运动响应灵敏度进行分析。在集中质量法建立拖曳缆动力学方程的基础上,拖曳深度变化和拖曳缆张力变化作为分析指标,拖曳系统操纵运动为变速直线运动和匀速回转,计算系统各参数的敏感性指数,从拖曳操纵参数和结构参数两方面分析参数变化对潜器水下拖曳系统操纵运动的影响,通过敏感性分析确定不同参数对拖曳系统运动响应影响的重要性大小。有助于在工程应用中实现快速、正确地调节拖曳系统的运动状态,为设计潜器水下拖曳系统和简化系统的操纵运动方程提供理论支撑。
In order to study the influence of various parameters of underwater submersible towed system on the maneuvering motion response, the cable dynamics numerical simulation method is used to analyze the motion response sensitivity of the towed system. Based on the dynamic equation of the towed cable established by the lumped mass method, the variation of the towed depth and the tension of the towed cable are taken as the analysis indexes. The maneuvering motion of the towed system is variable speed linear motion and uniform rotation, and the sensitivity index of each parameter of the system is calculated. The influence of parameter changes on the maneuvering motion of underwater submersible towed system is analyzed from the two aspects of towing manipulation parameters and structural parameters. The importance of the influence of different parameters on the motion response of the towed system is determined by sensitivity analysis. It is helpful to adjust the motion state of the towing system quickly and correctly in engineering application, and provides theoretical support for designing underwater submersible towed system and simplifying the maneuvering motion equation of the system.
2024,46(18): 54-60 收稿日期:2023-11-27
DOI:10.3404/j.issn.1672-7649.2024.18.009
分类号:P75
作者简介:孔培云(2000-),男,硕士研究生,研究方向为水下拖曳系统
参考文献:
[1] RUSSELL J J , ANDERSON W J. Equilibrium and stability of a CircularlyTowed cable subject to aerodynamic drag[J]. Journal of Aircraft, 1976, 14(7): 680-686.
[2] KENNEDY R M , STRAHAN E S. A linear theory of transverse cable dynamics at low frequencies[J]. A Linear Theory of Transverse Cable Dynamics at Low Frequencies, 1981, 6463: 1-49.
[3] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean engineering, 1983, 10(6): 443-457.
[4] WALTON T S, POLACHEK H. Calculation of transient motion of submerged cables[J]. Mathematics of computation, 1960, 14(69): 27-46.
[5] HUANG S. Dynamic analysis of three-dimensional marine cables[J]. Ocean Engineering, 1994, 21(6): 587-605.
[6] CHAI Y T, VARYANI K S, BARLTROP N D P. Three-dimensional lump-mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect[J]. Ocean Engineering, 2002, 29(12): 1503-1525.
[7] SUN Y , LEONARD J W , CHIOU R B. Simulation of unsteady oceanic cable deployment by direct integration with suppression[J]. Ocean Engineering, 1994, 21(3): 243-256.
[8] LEONARD J W , NATH J H. Comparison of finite element and lumped parameter methods for oceanic cables[J]. Engineering Structures, 1981, 3(3): 153-167.
[9] 朱克强, 郑道昌, 周江华, 等. 拖船操纵运动与水下拖曳列阵的耦合运动分析[J]. 中国航海, 2005(4): 15-18,22.
[10] 张峰, 朱克强, 蒋凯东, 等. 水下拖体在回转操纵中的运动仿真模拟[J]. 水道港口, 2009, 30(5): 376-380.
[11] 顾振福, 张正国. 线列阵拖曳特性试验研究[J]. 声学与电子工程, 1989(4): 23-27.
[12] SRIVASTAVA V K, SANYASIRAJU Y, TAMSIR M. Dynamic behavior of underwater towed cable in linear profile[J]. International Journal of Scientific & Engineering Research, 2011, 2(7): 1-10.
[13] 王志博. 拖曳系统变速拖曳的振动响应[J]. 船舶与海洋工程, 2019, 35(6): 1-7.
[14] 王志博. 拖曳系统回转运动中的冲击特性[J]. 舰船科学技术, 2019, 41(7): 49-54.
WANG Zhibo. Impact phenomenon in full turns of towing system[J]. Ship Science and Technology, 2019, 41(7): 49-54.
[15] ZHANG Dapeng, ZHAO Bowen, ZHU Keqiang, et al. Dynamic analysis of towed cable with variable length during turning maneuvers[J]. Scientific Reports, 2023, 13(1): 352-362.
[16] 李超, 艾艳辉, 佘湖清, 等. 水下拖曳系统定深和展开性能湖上试验研究[J]. 哈尔滨工程大学学报, 2022, 43(1): 62-68.
[17] SEN D. A study on sensitivity of maneuverability performance on the hydrodynamic coefficients for submerged bodies[J]. Journal of Ship Research, 2000, 45(3): 186-196.
[18] 王飞, 朱琨, 朱张立, 等. 导流缆拖曳系统运动敏感性分析与探讨[J]. 哈尔滨工程大学学报, 2013, 34(9): 1084-1088.
[19] 胡坤, 徐亦凡, 王树宗. 基于水动力系数敏感性指数的水下航行器运动方程简化研究[J]. 武汉理工大学学报(交通科学与工程版), 2008, 32(2): 358-361.
[20] 王志博. 多段式拖曳系统随机振动传递隔振模拟[J]. 振动与冲击, 2019, 38(21): 259-264.