为提高鱼雷涡轮机超高速径向双端面机械密封工作可靠性,建立机械密封热-流耦合仿真模型,分析机械密封运行时的端面温度特征,研究动环流水槽和动环转速对密封端面温度的影响。结果表明,内层密封端面温度沿半径增长方向先增大再减小,最高为150 ℃;外层密封端面温度沿半径增长方向逐渐升高,最高温度为210 ℃,高于冷却水汽化温度195 ℃,外层密封泄漏风险较高。机械密封动环流水槽可有效增强其冷却效果,密封端面温度随流水槽深度增加而降低,当流水槽深度为3 mm时,外层密封端面最高温度为188 ℃,低于冷却水汽化温度。内、外层密封端面温度均随动环转速上升而增加,当转速从10000 r/min增长到50000 r/min,内层密封端面最高温度从60 ℃增长至125 ℃,外层密封端面最高温度从70 ℃增长至185 ℃。
In order to improve the reliability of the ultra-high-speed radial double-end mechanical seal of the torpedo turbine, a thermal-fluid coupling simulation model of the mechanical seal was established. The temperature characteristics of the end face during the operation of the mechanical seal was analyzed, and the influence of the water groove of rotating ring and the rotating speed of the rotating ring on the temperature of the seal end face were studied. The results show that the temperature of the inner seal end face increases first and then decreases along the radius growth direction, with a maximum of 150 °C. The temperature of the outer seal end face gradually increases along the radius growth direction, with a maximum temperature of 210 °C, which is higher than the cooling water vaporization temperature of 195 °C, and the leakage risk of the outer seal is higher. The water groove of rotating ring of mechanical seal can effectively enhance its cooling effect. The temperature of the seal end face decreases with the increase of the depth of the water groove. When the depth of the water groove is 3 mm, the maximum temperature of the outer seal end face is 188 °C, which is lower than the vaporization temperature of the cooling water. The temperature of the inner and outer seal faces increases with the increase of the rotating speed of the rotating ring. When the rotating speed increases from 10000 r/min to 50000 r/min, the maximum temperature of the inner seal face increases from 60 °C to 125 °C, and the maximum temperature of the outer seal face increases from 70 °C to 185 °C.
2024,46(18): 70-75 收稿日期:2023-11-24
DOI:10.3404/j.issn.1672-7649.2024.18.012
分类号:U664
作者简介:赵天琦(1999-),男,硕士研究生,研究方向为能源动力推进技术
参考文献:
[1] 孙玉霞. 机械密封技术[M]. 北京: 化学工业出版社, 2014.06.
[2] 史小锋, 党建军, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647.
SHI Xiaofeng, DANG Jianjun, et al. Development status and trend of energy and power technology for underwater attack and defensive weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647.
[3] 李早东, 孟晋安. 基于Ansys稳态传热数值模拟方法的机械密封失效分析[J]. 石油化工设备, 2022, 51(2): 81-85.
LI Zaodong, MENG Jinan. Mechanical seal failure analysis based on ansys steady heat transfer numerical simulation method[J]. Petro-Chemical Equipment, 2022, 51(2): 81-85.
[4] 陈汇龙, 陆俊成, 等. 中高温密封端面轴向变形及液膜汽化特性研究[J]. 润滑与密封, 2022, 47(6): 1-9.
CHEN Huilong, LU Juncheng, et al. Study of medium and high temperature end face deformation and liquid film vaporization of mechanical seal[J]. Lubrication Engineering, 2022, 47(6): 1-9
[5] 姚黎明, 郑国运, 等. 高温介质机械密封温度场分析[J]. 液压气动与密封, 2019, 39(11): 4-6+13.
YAO Liming, ZHENG Guoyun, et al. Temperature field analysis of mechanical seal for high temperature medium[J]. Hydraulics Pneumatics & Seals, 2019, 39(11): 4-6+13.
[6] 汪宗太, 张秋翔, 等. 高温热油泵机械密封流固热耦合特性研究[J]. 机械设计与制造, 2016(3): 14-17.
WANG Zongtai, ZHANG Qiuxiang, et al. Study on the fluid-solid thermal coupled characters of mechanical seal used in hot oil pump[J]. Machinery Design & Manufacture, 2016(3): 14-17.
[7] 刘杰, 杨博峰, 等. 干摩擦工况下机械密封端面温度数值模拟[J]. 液压气动与密封, 2018, 38(5): 8-11.
LIU Jie, YANG Bofeng, et al. Numerical simulation of mechanical seal end-temperature under dry friction condition[J]. Hydraulics Pneumatics & Seals, 2018, 38(5): 8-11.
[8] 彭旭东, 金杰, 等. 高速涡轮泵机械密封端面温度变化规律研究[J]. 摩擦学学报, 2019, 39(3): 313-318.
PENG Xudong, JIN Ding, et al. Analysis of face temperature in mechanical seal applied in the high speed turbo pump[J]. Tribology, 2019, 39(3): 313-318.
[9] 余旻丰, 彭旭东, 等. 接触式机械密封外圆周织构强化换热机理研究[J]. 中国机械工程, 2023, 34(11): 1268-1279.
YU Minfeng, PENG Xudong, MENG Xiangkai, et al. Research on heat transfer enhancement mechanism of contact mechanical seals with textured circumference surfaces[J]. China Mechanical Engineering, 2023, 34(11): 1268-1279.
[10] 周宇坤, 彭旭东, 等. 机械密封动环外周表面织构换热机理及结构优化[J]. 摩擦学学报, 2020, 40(4): 538-550.
ZHOU Yukun, PENG Xudong, et al. Heat Transfer mechanism and optimization of circumferential texture of mechanical seal[J]. Tribology, 2020, 40(4): 538-550.
[11] 张嘉禾, 杨赪石, 等. 超高速下机械密封的结构及温度场研究[J]. 船海工程, 2014, 43(2): 162-164+172.
ZHANG Jiahe, YANG Chenshi, et al. On structure and temperature field of mechanical seal under super-speed condition[J]. Ship & Ocean Engineering, 2014, 43(2): 162-164+172.
[12] 张伟政, 赵吉军, 等. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238.
ZHANG Weizheng, ZHAO Jijun, et al. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals[J]. CIESC Journal, 2023, 74(3): 1228-1238.