为提高水下机器人(ROV)在水域环境中的位姿控制能力,结合传统自抗扰控制(Active Disturbance Rejection Control,ADRC)策略中fal函数在分段处过渡不够平滑的特点,提出一种新型非线性函数,用以改进传统fal函数。利用双曲正切函数在原点附近单调递增且连续光滑的特征,通过多项式拟合的方法构建出非线性函数sfal函数,然后使用李雅普诺夫方法对sfal函数进行稳定性分析,基于sfal函数给出扩张状态观测器的一般形式,并由此设计改进的ADRC控制器,通过对控制对象ROV搭建数学模型,利用Matlab/Simulink对系统的输出进行仿真与数值分析。最后,在ROV平台上进行对比实验,实验结果表明,改进型自抗扰控制能够有效抑制系统响应的超调量,并提升ROV位姿状态的抗扰能力。
In order to improve the pose control ability of Remotely Operated Vehicle(ROV) in water environment, a new nonlinear function is proposed to improve the traditional fal function, which is not smooth enough in the transition of fal function in traditional Active Disturbance Rejection Control (ADRC) strategy. By adopting the monotonic increasing and continuous smooth characteristic of hyperbolic tangent function near the origin, the nonlinear function sfal function is constructed by polynomial fitting. Then the stability of sfal function is analyzed by Lyapunov method. Based on sfal function, the general form of extended state observer(ESO) is given, and an improved ADRC is designed. Finally, the mathematical model of ROV is established, and the output of the system is simulated and analyzed by Matlab/Simulink. Finally, a comparative experiment is carried out on the ROV platform. The experimental results show that the improved ADRC can effectively suppress the overshoot of the system response and improve the anti-disturbance ability of the ROV pose state.
2024,46(18): 91-98 收稿日期:2024-3-12
DOI:10.3404/j.issn.1672-7649.2024.18.016
分类号:TP273
基金项目:国家重点研发计划资助项目(2020YFC1521704)
作者简介:王翻(1998-),男,硕士研究生,研究方向为缆控水下机器人
参考文献:
[1] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[2] FAREH R, KHADRAOUI S, ABDALLAH M Y, et al. Active disturbance rejection control for robotic systems: Aerview[J]. Mechatronics, 2021, 80: 102671.
[3] WU Y G, XU H X, JIANG Z B. A modified active disturbance rejection controller based on radial basis function neural network for AUV attitude control[C]//2022 International Conference on Advanced Robotics and Mechatronics (ICARM), Guilin, China: 2022: 962-966.
[4] LIU C, XIANG X B, YANG L H, et al. A hierarchical disturbance rejection depth tracking control of undera- ctuated AUV with experimental verifica tion[J]. Ocean Engineering, 2022, 264: 112458.
[5] WU X, JIANG D, YUN J, et al. Attitude stabilization control of autonomous underwater vehicle based on decoupling algorithm and PSO-ADRC[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 843020.
[6] SHAN Z, WANG Y, LIU X, et al. Fuzzy automatic disturbance rejection control of quadrotor UAV based on improved whale optimization algorithm[J]. IEEE Access, 2023.
[7] WANG X, XU B, GUO Y Y. Fuzzy logic system-based robust adaptive control of AUV with target tracking[J]. International Journal of Fuzzy Systems, 2023, 25(1): 338-346.
[8] SHI S Y, ZENG Z Q, ZHAO C B, et al. Improved active disturbance rejection control (ADRC) with extended state filters[J]. Energies, 2022, 15(16): 5799.
[9] NAHRI S N F, DU S Z, VAN Wyk B J. Predictive extended state observer based active disturbance rejection control for systems with time delay[J]. Machines, 2023, 11(2): 144.
[10] 彭毓卿. 新能源船舶路径跟踪自抗扰控制方法[J]. 舰船科学技术, 2024, 46(2): 161-164.
PENG yumin. Research on path tracking active disturbance rejection control method for new energy ships[J]. Ship Science and Technology, 2024, 46(2): 161-164.
[11] FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: Wiley, 1994.
[12] 陈增强, 程赟, 孙明玮, 等. 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46(3): 257-266.
CHEN zengqiang, CHENG yun, SUN mingwei, et al. Surveys on theory and engineering applications for linear active disturban-ce rejection control[J]. Information and Control, 2017, 46(3): 257-266.
[13] HU J X, GE Y, ZHOU X, et al. Research on the course control of USV based on improved ADRC[J]. Systems Science & Control Engineering, 2021, 9(1): 44-51.
[14] 于洪国, 康忠健, 陈瑶. 基于双曲正切函数的二阶时变参数扩张状态观测器[J]. 控制理论与应用, 2016, 33(4): 530-534.
YU hongguo , KANG zhongjian , CHEN yao. Time-varying para-meter second-order extended state observer based on hyperbolic tangend function[J]. Control Theory and Applications, 2016, 33(4): 530-534.
[15] 鄢化彪, 徐炜宾, 黄绿娥. 基于改进 ADRC 的四旋翼姿态控制器设计[J]. 北京航空航天大学学报, 2022, 49(12): 3283-3292.
YAN huabiao, XU weibin, HUANG lve. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 49(12): 3283-3292.
[16] LOZGACHEV G I. On a method of construction of Lyapunov functions[J]. Automation and remote control, 1998, 59(10): 1365-1369.