为探究多场耦合作用下的浮式风机系泊系统疲劳问题及其影响因素,利用Openfast-Sesam-Orcaflex软件建立浮式风机多场耦合计算模型,通过时域分析得到系泊链在不同计算工况下的张力-时历曲线。基于改进四峰雨流计数法和线性累积损伤理论的T-N曲线法计算出系泊缆在不同短期海况和分析工况下疲劳损伤并研究风场湍流强度对系泊缆疲劳损伤的影响。结果表明,气动载荷会大幅增加系泊缆的疲劳损伤,疲劳评估时不能忽略此载荷。当短期海况风速在额定风速以下时,湍流强度与系泊缆疲劳损伤呈正相关关系,且系泊疲劳损伤受湍流强度的影响在短期海况风速接近额定风速时达到最大。而当短期海况风速大于额定风速时,风场湍流强度对系泊疲劳损伤的影响较小。所得结论可为类似平台的系泊系统疲劳评估提供参考。
To investigate the fatigue issues and influencing factors of the mooring system of a floating wind turbine under the coupling effects of multiple environmental conditions, a coupled numerical model for floating wind turbines was established using the OpenFAST-Sesam-Orcaflex software. Time-domain analysis obtained tension-time histories of the mooring lines under different operating conditions. Based on the improved four-point rain-flow counting method and linear cumulative damage theory, the T-N curve method was employed to calculate the fatigue damage of the mooring cables under various short-term sea states and operational conditions. The impact of wind field turbulence intensity on the fatigue damage of the mooring cables was investigated. Results indicate that aerodynamic loads significantly increase the fatigue damage of the mooring cables, emphasizing the importance of considering this load in fatigue assessments. In short-term sea states with wind speeds below the rated wind speed, turbulence intensity is positively correlated with mooring cable fatigue damage, with the maximum influence occurring when the wind speed approaches the rated wind speed. However, when the short-term sea state wind speed exceeds the rated wind speed, the impact of wind field turbulence intensity on mooring fatigue damage is relatively small. The obtained conclusions can serve as a reference for the fatigue assessment of mooring systems in similar platforms.
2024,46(18): 106-110 收稿日期:2023-11-27
DOI:10.3404/j.issn.1672-7649.2024.18.018
分类号:U661.4;
基金项目:江苏省高等学校自然科学研究项目(23KJD580004);南通市社会民生科技计划项目(MS2023088);南通理工学院横向项目(HX2023086);南通理工学院科研项目(2022XKZ34)
作者简介:陈玲(1988-),女,硕士,副教授,研究方向为船体结构可靠性设计
参考文献:
[1] 陶建根, 陈怡, 黄博远. 海上风电发展现状与趋势分析[J]. 能源工程, 2023, 43(4): 1-9.
[2] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
[3] KVITRUD A. Lessons learned from norwegian mooring line failures 2010–2013[C]//ASME International Conference on Ocean. American Society of Mechanical Engineers, 2014. DOI:10.1115/OMAE2014-23095.
[4] FONTAINE E, KILNER A, CARRA C, et al. Industry Survey of Past Failures, Pre-emptive Replacements and Reported Degradations for Mooring Systems of Floating Production Units[C]//Offshore Technology Conference. BioMed Central Ltd, 2014. DOI:10.4043/25273-MS.
[5] 盛景, 桑松, 曹爱霞, 等. SPAR型浮式风力机涡激特性研究及系缆疲劳评估[J]. 太阳能学报, 2019, 40(10): 2979-2985.
[6] 邓露, 吴松熊, 钟文杰, 等. 风浪夹角变化对海上浮式风机系泊的影响[J]. 土木工程与管理学报, 2018, 35(1): 1-6.
[7] GUANHUA Z, YULIANG Z, SHENG D. System reliability analysis of mooring system for floating offshore wind turbine based on environmental contour approach[J]. Ocean Engineering, 2023, 285(P2): 115157.
[8] OLIVEIRA D L B, AGUIAR F H, SILVA R N, et al. Fatigue life estimate of metallic chain links of mooring systems assuming out of plane bending: From constant amplitude to random loading[J]. Ocean Engineering, 2023, 288(P2): 116139.
[9] XIFENG G, XIAOYONG L, XUTIAN X, et al. Fracture mechanics-based mooring system fatigue analysis for a spar-based floating offshore wind turbine[J]. Ocean Engineering, 2021, 223: 108618.
[10] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. United States: National Renewable Energy Laboratory(NREL), 2014.
[11] HANSEN M O L, SØRENSEN J N, VOUTSINAS S, et al. State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in Aerospace ences, 2006, 42(4): 285-330.
[12] 刘贵杰, 王清扬, 田晓洁, 等. 海洋结构物小尺度桩柱的水动力系数研究与进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(1): 136-144.
[13] COMMISSION I E. Design requirements for offshore wind turbine: IEC 61400-3[S]. Geneva: The International Electrotechnical Commission, 2009: 144.
[14] MATTIA O M, MELISA M. A global evaluation of the JONSWAP spectra suitability on coastal areas[J]. Ocean Engineering, 2022, 266(P2): 112756.
[15] SHU H, YAO A, MA K T, et al. API RP 2SK 4th Edition-An Updated Stationkeeping Standard for the Global Offshore Environment[C]//Offshore Technology Conference. 2018. DOI:10.4043/29024-MS.
[16] 周陈炎, 张佳宁, 孟巧, 等. 基于改进四峰谷值雨流计数法的船舶疲劳强度评估[J]. 船海工程, 2022, 51(6): 42-46+52.