舰船通信系统会产生大量的通信关联信息,难以在海量的通信关联信息中,捕获舰船通信数据的关键属性,对此,提出舰船通信关联信息目标数据检索方法。通过计算舰船通信关联信息全局检索的特征量,对舰船网络数据进行聚类和信息融合,结合深度卷积神经网络和哈希学习算法构建目标数据检索模型,得到目标数据的初步检索结果。使用汉明距离计算初步检索结果的相似度,比较目标检索数据与初步检索结果的哈希码之间的汉明距离,输出与舰船通信关联信息目标数据相似度最高的检索结果,实现目标数据检索。实验验证,该方法实现的目标数据检索MAP值能够达到98%以上,实现的不同信息种类数据检索的时间消耗均能保证在在8 ms以下,能够为相关人员提供更加便捷和可靠的信息服务,为舰船管理、维护和作战决策提供有力的支持。
The ship communication system generates a large amount of communication related information, making it difficult to capture the key attributes of ship communication data in a massive amount of communication related information. Therefore, a target data retrieval method for ship communication related information is proposed. By calculating the feature quantity of global retrieval of ship communication correlation information, clustering and information fusion of ship network data are carried out, and a target data retrieval model is constructed by combining deep convolutional neural networks and hash learning algorithms to obtain preliminary retrieval results of the target data. Calculate the similarity of preliminary search results using Hamming distance, compare the Hamming distance between the target search data and the hash code of the preliminary search results, output the search result with the highest similarity to the target data related to ship communication, and achieve target data retrieval. Experimental verification shows that the target data retrieval MAP value achieved by this method can reach over 98%, and the time consumption for data retrieval of different types of information can be guaranteed to be below 8 ms. It can provide more convenient and reliable information services for relevant personnel, and provide strong support for ship management, maintenance, and combat decision-making.
2024,46(18): 159-162 收稿日期:2024-3-24
DOI:10.3404/j.issn.1672-7649.2024.18.028
分类号:TP391
作者简介:李中(1982-),男,博士,讲师,研究方向为交通运营管理
参考文献:
[1] 关欣, 国佳恩, 卢雨. 用于跨模态舰船图像检索的判别性对抗哈希变换器[J]. 电子与信息学报, 2023(12): 4411-4420.
[2] 缪岚芯, 雷雨, 曾鹏鹏, 等. 基于粒度感知和语义聚合的图像-文本检索网络[J]. 计算机科学, 2022, 49(11): 134-140.
[3] 张昇, 刘春宝. 船舶电子海图目标信息快速检索方法[J]. 舰船科学技术, 2022, 44(24): 137-140.
ZHANG Sheng, LIU Chunbao. Rapid retrieval method of ship electronic chart target information[J]. Ship Science and Technology, 2022, 44(24): 137-140.
[4] 赵松燕, 曲朝阳, 郭晓利, 等. 基于Map Reduce的输电监测数据智能检索模型[J]. 电力系统保护与控制, 2023, 51(22): 177-187.
[5] Zhang B J, Liu G H, Hu J K. Filtering deep convolutional features for image retrieval[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(1): 2252003. 1-2252003. 22.
[6] ZHUO W , HE Z , ZHENG M, et al. Research on personalized image retrieval technology of video stream big data management model[J]. Multimedia Tools and Applications, 2022, 81(29): 191-208.
[7] 虞文波, 游进国, 牛祥虞. 基于强化学习的数据库多属性索引推荐[J]. 计算机应用研究, 2023, 40(6): 1789-1793.
[8] 杨凤丽, 李娜, 刘仁芬. 基于多级索引的高维数据近似最近邻搜索[J]. 计算机仿真, 2022, 39(11): 398-401.