为实现水下耐压舱的功能化应用,并达到轻量化的目标,针对耐压舱的结构以及材料进行研究。采用碳纤维复合材料与钛合金材料设计制备水下双层圆柱形水密结构耐压舱,碳纤维层选择[90°/90°/0°]s的铺层方案,与纯钛合金制备的耐压舱相比重量可减少23%。基于Abaqus有限元分析软件对耐压舱受到的实际工况进行强度、刚度分析,结果表明筒体满足强度要求,并通过屈曲分析可得到耐压舱发生失稳的临界载荷为22.15 MPa。加工出实物,对实物进行加压实验,实验结果满足强度、刚度、密封性要求。分析表明碳纤维复合材料是制作水下耐压舱的重要途经。
In order to realize the functional application and lightweight of underwater pressure cabin, the structure and materials of pressure cabin were studied. Carbon fiber composite material and titanium alloy material are used to design and prepare underwater double-layer cylindrical watertight structure pressure cabin. The carbon fiber layer is selected as the layup scheme of [90°/90°/0°]s, and the weight of the ballast tank made of pure titanium alloy can be reduced by 23%. Based on the Abaqus finite element analysis software, the strength and stiffness analysis of the ballast tank under the actual working conditions are carried out. The results show that the cylinder meets the strength requirements, and the critical load of the ballast tank failure is 22.15 MPa by buckling analysis. The physical object was processed, and the material is subjected to pressure experiment. The experimental results meet the requirements of strength, stiffness and tightness. The analysis shows that carbon fiber composite material is an important way to make underwater pressure cabin.
2024,46(19): 1-6 收稿日期:2023-12-4
DOI:10.3404/j.issn.1672-7649.2024.19.001
分类号:TB333;TH49
基金项目:河南省水下智能装备重点实验室开放基金项目(KL03C2102);华北水利水电大学客座教授基金项目(4001-40734)
作者简介:郝用兴(1966-),男,博士,教授,研究方向为新材料及先进加工技术、数字化设计、仿真与制造技术
参考文献:
[1] 唐军, 杨书麟, 秦智. 水下机器人耐压舱结构设计及参数优化[J]. 江西理工大学学报, 2020, 41(5): 88-95.
TANG Jun, YANG Shulin, QIN Zhi. Structure design and parameters of underwater robot pressure chamber[J]. Journal of Jiangxi University of Science and Technology, 2020, 41(5): 88-95.
[2] 吴健, 朱庭国, 李泓运等. 蛋形复合材料耐压壳声目标强度分析[J]. 复合材料科学与工程, 2021(12): 12-18.
WU Jian, ZHU Tingguo, LI Hongyun, et al. Acoustic target strength analysis of composite egg-shaped pressure hulls[J]. Composites Science and Engineering, 2021(12): 12-18.
[3] 张帆, 许健, 顾春辉, 三维全五向编织复合材料的特性及制备[J]. 材料导报, 2017, 32(S1): 350-353.
ZHANG Fan, XU Jian, GU Chunhui, The properties and fabrication of three-dimensional all five-directional braided composites[J]. Materials Report, 2017, 32(S1): 350-353.
[4] 王鹏飞, 江亚彬, 宋江, 等. 深海用复合材料耐压壳体结构设计方法研究[J]. 复合材料科学与工程, 2020(11): 49-53.
WANG Pengfei, JIANG Yabin, SONG Jiang, et al. Research on structure design of composite pressure hulls for deep sea[J]. Composites Science and Engineering, 2020(11): 49-53.
[5] 罗珊, 李永胜, 王纬波. 非金属潜水器耐压壳发展概况及展望[J]. 中国舰船研究, 2020, 15(4): 9-18.
LUO Shan, LI Yongsheng, WANG Weibo. Development and prospects of non-metallic submersible pressure hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 9-18.
[6] 刘土光. 复合材料在舰船上的应用展望[J]. 舰船科学技术, 2005, 27(3): 9-11.
LIU Tuguang. Development applied of composite structures for naval ships and submarines[J]. Ship Science and Technology, 2005, 27(3): 9-11.
[7] 董博. 复合材料及碳纤维复合材料应用现状[J]. 石油化工, 2013, 42(5): 552-554.
DONG Bo. Application status of composites including carbon fiber composites[J]. Petrochemistry, 2013, 42(5): 552-554.
[8] 刘兴红, 李明, 涂泉. 基于材料力学的钛合金薄壁筒体零件热定型工艺[J]. 锻压技术, 2015, 40(1): 39-42.
LIU Xinghong, LI Ming, TU Quan. Study of heat setting process for titanium alloy thin-walled cylindrical parts based on mechanics of materials[J]. Forging Technology, 2015, 40(1): 39-42.
[9] 罗珊, 李永胜, 屈平等. 静水压下复合材料圆柱壳力学特性研究[J]. 中国造船, 2021, 62(4): 35-51.
LUO Shan, LI Yongsheng, QU Ping, etal. Research on mechanical properties of composite cylindrical shells under hydrostatic pressure[J]. Ship Building of China, 2021, 62(4): 35-51.
[10] 李鹏飞. 碳/碳编织复合材料微结构设计与计算[D]. 兰州: 兰州理工大学. 2010.
[11] 王冬峣, 赫晓东, 刘文博, 等. 二维编织复合材料在正交切削中的切削力和加工表面质量研究[J]. 玻璃钢/复合材料, 2017(12): 77-82.
WANG Dongxiao, HE Xiaodong, LIU Wenbo, et al. Study on cutting force and machined surface quality of two-dimensional braided composites in orthogonal cutting[J]. FRP/Composites, 2017(12): 77-82.
[12] 孙向东, 谢鑫, 戴泓源, 等. 钛合金与碳纤维复合身管在无后坐力炮中的应用分析[J/OL]. 火炮发射与控制学报, 2023:1-7. http://kns.cnki.net/kcms/detail/61.1280.TJ.20230824.1452.004.html.
[13] 魏振卓, 徐元哲, 王连明. 水下耐压舱结构设计方法研究[J]. 东北师范大学学报(自然科学版), 2022, 54(2): 89-94.
WEI Zhenzhuo, XU Yuanzhe, WANG Lianming. Research on structurral design method of underwater pressure tank[J]. Journal of Northeast Normal University(Natural Science Edition), 2022, 54(2): 89-94.
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器: GB 150.1~150.4—2011[S]. 北京: 中国标准出版社.
[15] 惠雪梅, 张岗, 侯晓等. 结构/防热一体化 ?480 mm 复合材料壳体水压实验的声发射特征[J]. 航空材料学报, 2022, 42(3): 97-103.
HUI Xuemei, ZHANG Gang, HOU Xiao, et al. Acoustic emission characteristics of ?480 mm composite shell with structure and heat protection integration during water pressure test[J]. Journal of Aeronautical Materials, 2022, 42(3): 97-103.