箱式保障平台在海上物资运输方面具有重要应用前景。本文提出一种多模块拼组箱式平台设计方案,采用Ansys软件中的AQWA水动力模块,基于三维势流理论与时域分析方法,对拖航船拖曳下的箱式平台的水动力性能进行数值模拟。研究结果表明:1)箱式平台左右两模块运动协调,基本保持一致;2)在规则波工况中,平台垂荡运动最大值随波浪周期递增表现往复振荡的特点,纵摇运动最大值随波浪周期递增整体呈递减趋势;3)在规则波工况中,随着周期的增大,拖曳缆绳张力整体呈现增大趋势;不规则波工况中,拖曳缆绳张力随着海况等级的增加整体呈现增大的趋势;4)在规则波工况中,单位波幅下,随着周期的增大,中剖面剪力和弯矩整体呈现下降的趋势;不规则波工况中,中剖面剪力和弯矩随着海况等级的增加呈现递增的趋势。通过数值研究,可为实际作业中拖航作用下箱式平台的水动力特性计算提供基准数据,推动箱式平台设计理论的发展。
The box-type articulated platform has important applications in ocean engineering. In this paper, a multi-module assembled box-type platform is described. The hydrodynamic performance of the platform by a towing vessel is numerically simulated, based on the three-dimensional velocity potential theory and the indirect time-domain method through the hydrodynamic module AQWA in Ansys. The results show that: 1) The motion of the left and right modules of the box-type platform is basically consistent; 2) In regular waves, the maximum heave motion of the platform exhibits a reciprocating oscillation characteristic as the wave period increases, while the maximum pitch motion generally presents a decreasing trend as the wave period increases; 3) In regular waves, with the increase of the period, the overall trend of the towing cable tension increases; in irregular waves, the overall trend of the towing cable tension increases with the increase of the significant wave height; 4) In regular waves, the shear force and bending moment in the middle section of the platform decreases with the increase of the period; in irregular waves, the shear force and bending moment in the middle section of the platform increases with the increase of the significant wave height. Through numerical research, reference data can be provided for the calculation of hydrodynamic characteristics of box platforms under towing. It can promote the development of box platform design theory.
2024,46(19): 18-24 收稿日期:2023-11-10
DOI:10.3404/j.issn.1672-7649.2024.19.004
分类号:U661.1
基金项目:中图博士后科学基金资助项目(2018M643852)
作者简介:赵建成(1998-),男,硕士研究生,研究方向为船舶与海洋工程水动力
参考文献:
[1] 丛文超, 侯明君, 王志东, 等. 岛礁地形影响下多体浮桥的水动力性能研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 689-696.
CONG Wenchao, HOU Mingjun, WANG Zhidong, et al. Ling Hongjie. Hydrodynamic performance study of multi-body floating bridges under the influence of island and reef topography[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(5): 689-696.
[2] 侯明君. 近岛礁连岸浮式栈桥在波浪中的运动响应研究[D]. 镇江: 江苏科技大学, 2017.
[3] LIU X, CAI Z, SUN Z, et al. Study on long-term distribution and short-term characteristics of the waves near islands and reefs in the SCS based on observation[J]. Ocean Engineering, 2020, 208(1): 108171.1-108171.17.
[4] 黄鑫伟, 程志友, 胡健, 等. 基于RANS/LES混合方法的近岸水域波浪增阻影响的数值模拟[J]. 船舶工程, 2023, 45(1): 63-70+83.
HUANG Xinwei, CHENG Zhiyou, HU Jian, et al. Numerical simulation of wave induced drag in nearshore waters based on RANS/LES hybrid method[J]. Ship Engineering, 2023, 45(1): 63-70+83.
[5] NEWMAN J N. Wave effects on deformable bodies[J]. Applied Ocean Research, 1994, 16(1): 47-59.
[6] 孙昭晨, 王环宇. 铰接多浮体耦合解析计算[J]. 船舶力学, 2009, 13(1): 34-40.
SUN Zhaochen, WANG Huanyu. Analytical calculation of coupling of articulated multi floating bodies[J]. Ship Mechanics, 2009, 13(1): 34-40.
[7] DIAMANTOULAKI I, ANGELIDES D C. Analysis of performance of hinged floating breakwaters[J]. Engineering Structures, 2010, 32(8): 2407-2433.
[8] TAJALI Z, SHAFIEEFAR M. Hydrodnamic analysis of multi-body floating piers under wave actiong[J]. Ocean Engineer, 2011, 38(17): 1925-1933.
[9] 丁红岩, 刘宪庆, 张浦阳, 等. 航速对四筒型基础海洋平台拖航影响的试验分析[J]. 天津大学学报, 2012, 45(1): 43-49.
DING Hongyan, LIU Xianqing, ZHANG Puyang, et al. Experimental analysis of the effect of sailing speed on towing of a four tube foundation offshore platform[J]. Journal of Tianjin University, 2012, 45(1): 43-49.
[10] 王桂波, 勾莹, 滕斌, 等. 铰接多浮体系统在规则波作用下的运动响应[J]. 大连理工大学学报, 2014, 54(6): 618-625.
WANG Guibo, GOU Ying, TENG Bin, et al. Motion response of articulated multi body systems under regular wave action[J]. Journal of Dalian University of Technology, 2014, 54(6): 618-625.
[11] GHAFARI H R, KETABDARI M J, GHASSEMI H, et al. Numerical study on the hydrodynamic interaction between two floating platforms in Caspian Sea environmental conditions[J]. Ocean Engineering, 2019, 188(9): 106273.1-106273.11.
[12] 孙建群, 姜鹏宇, 宋春辉, 等. 规则波作用下多模块浮桥的水动力性能试验[J]. 哈尔滨工程大学学报, 2019, 40(1): 162-167.
SUN Jianqun, JIANG Pengyu, SONG Chunhui, at al. Hydrodynamic performance test of multi module floating bridge under regular wave action[J]. Journal of Harbin Engineering University, 2019, 40(1): 162-167.