近年来,海运行业对集装箱船的需求量逐渐增加,随着集装箱船主尺度的不断增加和快速性的不断提升,船体总强度下降并且会发生高频振动,这些共同导致了船舶的水弹性响应。有鉴于此,本文基于 Ansys Fluent 和Transient Structure,使用CFD-FEM 单向耦合的方法,研究波浪因素对集装箱船的水弹性响应,对Fr=0.26时不同波浪情况下KCS船的水弹性响应进行仿真,结果表明,波浪情况下KCS船呈现周期性响应,主要受船舶固有频率影响,船舶会出现周期性的中拱现象。
With the continuous increase of the size of container ship owners and the continuous improvement of rapidity, the total strength of the hull decreases and high-frequency vibration occurs, which together lead to the hydroelastic response of the ship. In view of this, based on Ansys, Fluent and Transient Structure, this paper used the unidirectional coupling method of CFD-FEM to study the hydroelastic response of wave factors to container ships, and simulated the hydroelastic response of KCS ships under different wave conditions when Fr=0.26. The results mainly show that the KCS ship presents a periodic response under the wave condition, and the ship will have a periodic mid-arch phenomenon mainly affected by the natural frequency of the ship.
2024,46(19): 42-49 收稿日期:2023-11-9
DOI:10.3404/j.issn.1672-7649.2024.19.008
分类号:U674.131
基金项目:大连市科技攻关项目(2021JB11GX006)
作者简介:祝晓(1984-),男,硕士,研究方向为船舶动力装置
参考文献:
[1] PAIK K, CARRICA P M, LEE D, et al. Strongly coupled fluid–structure interaction method for structural loads on surface ships[J]. Ocean Engineering, 2009, 36(17): 1346-1357.
[2] HIRDARIS S E, PRICE W G, TEMAREL P. Two and three-dimensional hydroelastic modelling of a bulker in regular waves[J]. Marine Structures, 2003, 16(8): 627-658.
[3] KARA F. Time domain prediction of hydroelasticity of floating bodies[J]. Applied Ocean Research, 2015, 51: 1-13.
[4] AKSU S, PRICE W G, TEMAREL P. A comparison of two-dimensional and three-dimensional hydroelasticity theories Including the effect of slamming[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, 1991, 205(1): 3-15.
[5] 柳光军. 基于CFD-FEM双向耦合的船舶非线性水弹性问题研究[D]. 大连:大连理工大学, 2021.
[6] 陈占阳, 任慧龙, 李辉, 等. 超大型船舶变截面梁分段模型的载荷试验研究[J]. 哈尔滨工程大学学报, 2012, 33(3): 263-268.
[7] 焦甲龙, 赵玉麟, 张皓, 等. 船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究[J]. 振动与冲击, 2019, 38(20): 229-236.
[8] 焦甲龙, 任慧龙, 杨虎, 等. 分段模型波浪载荷试验槽型龙骨梁设计与研究[J]. 振动与冲击, 2015(14): 11-15.
[9] 焦甲龙. 实际海浪环境中舰船大尺度模型运动与载荷响应试验研究[D]. 哈尔滨:哈尔滨工程大学, 2016.
[10] 杨鹏, 顾学康, 彭正梁, 等. 6750箱集装箱船非线性波激振动和颤振响应分析[J]. 船舶力学, 2020, 24(2): 221-235.
YANG Peng, GU Xuekang, PENG Zhengliang, et al. Study on nonlinear springing and whipping of a 6750 TEU container ship[J]. Journal of Ship Mechanics, 2020, 24(2): 221-235.
[11] 田超, 官腾. THAFTS在大型散货船水弹性响应中的应用[J]. 舰船科学技术, 2018, 40(12): 37-43,48.
TIAN Chao, GUAN Teng. Appliction of THAFTS in hydroelastic response of a large bulk carrier[J]. Ship Science and Technology, 2018, 40(12): 37-43,48.
[12] 张亮. 流体力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001.
[13] 袁银梅, 李朝祥. 带钢热镀锌数值模拟[J]. 安徽工程科技学院学报(自然科学版), 2006, 21(4): 27-30.
[14] 李云, 张栋. 基于有限元分析的船舶结构设计[J]. 舰船科学技术, 2022, 44(6): 40-43.
LI Yun, ZHANG Dong. Research on ship structure design based on finite element analysis[J]. Ship Science and Technology, 2022, 44(6): 40-43.
[15] 席雷. 风力机叶片优化设计及气动特性分析研究[D]. 吉林:东北电力大学, 2021.
[16] 陈科, 赖明雁. 基于CFD数值的模拟船/桨相互干扰流动[J]. 船舶与海洋工程, 2018, 34(2): 5-10.
CHEN Ke, LAI Mingyan. CFD Based Numerical Simulation of Ship-Propeller Flow Interaction[J]. Naval Architecture and Ocean Engineering, 2018, 34(2): 5-10.