直线移相变压器作为一种新型电能变换装置,具备任意角度移相、拓展性强等优点,应用前景广阔。但直线移相变压器运行时噪声较大,研究其电磁振动与噪声对变压器设计及减振降噪具有重要意义。本文从直线移相变压器噪声产生的源头之一磁致伸缩效应入手,在COMSOL Multiphysics平台建立有限元模型,对其开展电磁-结构-声场联合仿真。首先对直线移相变压器进行瞬态电磁场分析,计算其磁场分布情况;随后将瞬态电磁场计算结果与变压器结构耦合,进行谐响应分析,得到振动加速度频谱;最后将变压器的边界振动加速度耦合到空气域,求解空气域的声压场,分析得到直线移相变压器周围噪声的分布。结果表明,磁致伸缩力确实会引起直线移相变压器共振,产生固定频率的电磁振动与噪声。
As a new type of power conversion device, linear phase-shifting transformer has the advantages of arbitrary angle phase-shifting and strong expansibility, and has broad application prospects. However, the noise is large during operation. It is of great significance to study its electromagnetic vibration and noise for transformer design and vibration and noise reduction. This paper starts with the magnetostrictive effect, which is one of the sources of noise in linear phase-shifting transformers. The finite element model is established on the COMSOL Multiphysics platform, and the electromagnetic-structure-sound field joint simulation is carried out. Firstly, the electromagnetic field analysis of the transformer is carried out to calculate the magnetic field distribution. Then the transient electromagnetic field calculation results are coupled with the transformer structure. The harmonic response analysis is carried out to obtain the vibration acceleration spectrum. Finally, the boundary vibration acceleration of the transformer is coupled to the air domain to solve the sound pressure field in the air domain. The distribution of noise around the linear phase-shifting transformer is analyzed. The results show that the magnetostrictive force does cause the resonance of the linear phase-shifting transformer, resulting in electromagnetic vibration and noise at a fixed frequency.
2024,46(19): 75-80 收稿日期:2023-12-13
DOI:10.3404/j.issn.1672-7649.2024.19.013
分类号:TM401
基金项目:大学自主立项项目(2022504040)
作者简介:严冬傲(1995-),男,硕士,研究方向为电磁场分析
参考文献:
[1] ZHOU C, ZHAO J, WANG H, et al. Harmonic analysis and cancellation of inverter systems with linear phase-shifting transformer[J]. IEEE Transactions on Electrical and Electronic Engineering, 2023, 18(10): 1617–1625.
[2] 董兴康. 考虑磁致伸缩的永磁直线电机振动噪声的研究[D]. 沈阳: 沈阳工业大学, 2021.
[3] 王前超. 基于磁致伸缩等效力计算的变压器电磁振动研究[D]. 天津: 天津工业大学, 2021.
[4] KOEN Delaere, WARD Heylen, KAY Hameyer, et al. Local mangetostriction forces for finite element analysis[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3115-3118.
[5] ZHU Lihua, YANG Qingxin, YAN Rongge. Numerical analysis of vibration due to magnetostriction of three phase transformer core[C] //Proceedings of the 6th International Conference on Electromagnetic Field Problems and Applications (ICEF′ 2012), Dalian, China, 2012.
[6] 胡静竹, 刘涤尘, 廖清芬, 等. 基于有限元法的变压器电磁振动噪声分析[J]. 电工技术学报, 2016, 31(15): 81-88.
[7] 祝丽花, 杨庆新, 闫荣格, 等. 考虑磁致伸缩效应电力变压器振动噪声的研究[J]. 电工技术学报, 2013, 28(14): 1-6+19.
[8] 钟思翀, 祝丽花, 王前超, 等. 电力变压器振动噪声分析及其有源降噪[J]. 电工技术学报, 2022, 37(S1): 11-21.
ZHONG Sichong, ZHU Lihua, WANG Cianchao, et al. Electromagnetic vibration of power transformer and active noise reduction[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 11-21.
[9] 陈传敏, 冯洪达, 郭兆枫, 等. 220kV电力变压器辐射噪声特性仿真分析[J]. 电力学报, 2020, 35(6): 515-521.
[10] TANZER T, PREGARTNER H, RIEDENBAUER M, et al. Magnetostriction of electrical steel and its relation to the no-load noise of power transformers[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 4306-4314.
[11] ZHANG Pengning, LI Lin, CHENG Zhiguang, et al. Study on vibration of iron core of transformer and reactor based on Maxwell stress and anisotropic magnetostriction[J]. IEEE Transactions on Magnetics, 2019, 55(2): 9400205.
[12] YAMAGASHIRA M, WAKABAYASHI D, ENOKINOZO M. Vector magnetic properties and 2-D magnetostriction of various electrical steel sheets under rotating flux condition[J]. IEEE Transactions on Magnetics, 2014, 50(4): 6100404.
[13] 祝丽花. 叠片铁心磁致伸缩效应对变压器、交流电机的振动噪声影响研究[D]. 天津: 河北工业大学, 2013.