针对现阶段水下滑翔机水下航速慢,以岸基或船基部署时转场至预定作业区耗时过长的问题,本文在其原有机翼基础上设计一种使用亚音速对称翼型的矩形可断机翼。通过断翼的方式,使水下滑翔机兼容水下滑翔与空中滑翔功能,具备了跨介质滑翔的基础;采用计算流体力学方法,构建一种采用该机翼的跨介质滑翔器数值计算模型,开展滑翔器在该机翼影响下的空中气动特性数值模拟试验。试验结果表明,在本文研究的范围内,使用该亚音速对称翼型、可断机翼的跨介质滑翔器在空中滑翔时平飞失速速度不低于90.5 m/s,同时具有较好的升阻比特性、俯仰特性,在主要工况下也具备较好的静稳定度,能够以0.8 Ma初速开始空中滑翔,可有效减少滑翔器向预定作业区转场所耗费的时间。
In response to the current problem of slow underwater speed and long transition time to the predetermined operation area when deploying on shore or ship, this paper designs a rectangular breakable wing using subsonic symmetric airfoil based on its original wing. By breaking the wings, the underwater glider is compatible with both underwater and aerial gliding functions, providing the foundation for trans-media gliding; A numerical calculation model for a trans-media glider using the wing was constructed using computational fluid dynamics methods, and numerical simulation experiments were conducted on the aerodynamic characteristics of the glider under the influence of the wing. The experimental results indicate that. Within the scope of this study, a trans-media glider with a subsonic symmetric airfoil and a breakable wing is used for horizontal flight with a stall speed of no less than 90.5 m/s during aerial gliding. It also has good lift drag ratio and pitch characteristics, and good static stability under main operating conditions. It can start aerial gliding at an initial speed of 0.8 Ma, effectively reducing the time required for the glider to transition to the predetermined operating area.
2024,46(19): 92-99 收稿日期:2023-11-29
DOI:10.3404/j.issn.1672-7649.2024.19.016
分类号:TJ6
作者简介:程时锃(1998-),男,硕士研究生,研究方向为跨介质滑翔器设计
参考文献:
[1] DAVIS R E, ERIKSEN C C, JONES C P, et al. Autonomous buoyancy-driven underwater gliders [J]. Engineering, Environmental Science, 2002. (3): 37-59.
[2] 程雪梅. 水下滑翔机研究进展及关键技术[J]. 鱼雷技术, 2009, 17(6): 1-6.
CHENG Xuemei. Research progress and key technologies of underwater gliders [J]. Torpedo Technology, 2009, 17(6): 1-6.
[3] 黄天鹏, 王霄婷, 吴云燕, 等. 基于能量管理的飞翼飞行器迫降轨迹设计[J]. 测控技术, 2023, 42(9): 57-61+97.
HUANG Tianpeng, WANG Xiaoting, WU Yunyan, et al. Design of forced landing trajectory for flying wing aircraft based on energy management[J]. Measurement and Control Technology, 2023, 42(9): 57-61+97.
[4] 云忠, 温猛, 罗自荣, 等, 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
YUN Zhong, WEN Meng, LUO Zirong, et al. , Design and water entry analysis of a simulated Kingfisher water air cross medium vehicle [J]. Journal of Zhejiang University (Engineering Edition), 2020, 54 (2): 407-415.
[5] 吴正阳. 基于翠鸟入水策略的跨介质飞行器构型仿生设计及入水性能研究[D]. 长春: 吉林大学, 2021.
[6] 温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究[J]. 弹箭与制导学报, 2019, 39(5): 63-66+72.
WEN Zhiwen, YANG Zhidong, WANG Lijing. Modeling and air trajectory simulation of airborne torpedo systems[J]. Journal of Missile and Guidance, 2019, 39(5): 63-66+72.
[7] 田应元, 喻国兆, 雄健. 一种带减速伞的弹体三维弹道数值仿真模型[J]. 舰船科学技术, 2009, 31(3): 143-146.
TIAN Yingyuan, YU Guozhao, XIONG Jian. A three-dimensional ballistic numerical simulation model of missile body with retarding parachute[J]. Ship Science and Technology, 2009, 31(3): 143-146.
[8] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.
PAN Long, WANG Huanran, YAO Erren, et al. Research on the Water buffering mechanism of a head jet flat head cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
[9] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.
LIU Huaping, YU Feipeng, HAN Bing, et al. Numerical simulation study on influence of top jet in object water entering impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
[10] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817.
ZHAO Hairui, SHI Yao, PAN Guang. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817.
[11] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164.
[12] 徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165+170.
XU Xindong, LI Jianchen, CAO Xiaojuan. Research on the impact performance of torpedo buffer head cap in water[J]. Torpedo Technology, 2012, 20(3): 161-165+170.
[13] 李向阳. 反潜导弹缓冲头帽入水冲击特性的数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[14] 施瑶, 刘振鹏, 潘光, 等. 航行器梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953.
SHI Yao, LIU Zhenpeng, PAN Guang, et al. Structural design and load reduction performance analysis of aircraft gradient density head caps[J]. Journal of Mechanics, 2022, 54(4): 939-953.
[15] 赵轲, 邓俊, 黄江涛, 等. 飞翼布局高低速一体化气动优化设计研究[J]. 航空学报, 2024, 45(15): 195-213.
ZHAO Ke, DENG Jun, HUANG Jiangtao, et al. Research on integrated aerodynamic optimization design of high and low speed wing layout[J]. Journal of Aeronautics, 2024, 45(15): 195-213.
[16] 禹志龙, 李颖晖, 裴彬彬, 等. 具有飞行包线限制的飞翼无人机鲁棒自适应容错姿态控制[J]. 兵工学报, 2024, 45(1): 231-240.
YU Zhilong, LI Yinghui, PEI Binbin, et al. Robust adaptive fault-tolerant attitude control of flying wing unmanned aerial vehicles with flight envelope constraints[J]. Journal of Ordnance Engineering, 2024, 45(1): 231-240.
[17] 徐世勋, 刘红玉, 朱亚强, 等. 翼型对水下滑翔机滑翔性能影响分析[J]. 中国机械工程, 2017, 28(3): 286-293.
XU Shixun, LIU Honyu, ZHU Yaqiang, et al. Analysis of the influence of airfoil on the gliding performance of underwater gliders[J]. China Mechanical Engineering, 2017, 28(3): 286-293.
[18] 李桦, 田正雨, 潘沙. 飞行器气动设计[M]. 北京: 科学出版社, 2017.
[19] 朱继懋主编. 潜水器设计[M]. 上海: 上海交通大学出版社, 1992.
[20] 《飞机设计手册》编委会. 飞机设计手册[M]. 北京: 国防工业出版社, 1990.
[21] 郭勇颜, 曾志春, 何磊等. DLR-F11高升力构型的数值模拟 [J]. 计算物理, 2023, 40 (4): 401-415.
GUO Yanyan, ZENG Zhichun, HE Lei, et al. Numerical simulation and analysis of DLR-F11 high lift configuration [J]. Computational Physics: 2023, 40(4): 401-415.
[22] CHITALE KC, RASQUIN M, MARTIN J, et al. Finite element flow simulations of the EUROLIFT DLR -F11 high lift conguration[J]. Eprint Arxiv, 2014: 14-18.