为提高无人船的安全性、雷达目标探测精度和通信效率,提出一种在船舶间集成无线激光通信与激光雷达的正交频分复用-线性调频(Orthogonal Frequency Division Multiplexing-Linear Frequency Modulation,OFDM-LFM)一体化信号系统。运用比尔-朗伯定律、瑞利散射及菲涅耳公式对水面光学特性进行建模,分别考察了水面对光的吸收、散射以及水面起伏对光信号的影响。分析了16进制正交振幅调制(16-Quadrature Amplitude Modulation,16QAM)、 正交相移键控(Quadrature Phase Shift Keying,QPSK)、 二进制相移键控(Binary Phase Shift Keying, BPSK)以及最小频移键控(Minimum Shift Keying,MSK)4种调制方式下系统的通信误码性能,并在确保一体化系统雷达速度分辨率的条件下,引入脉冲压缩技术来提升雷达的距离分辨率。仿真结果表明,无人船OFDM-LFM激光雷达通信一体化信号系统在BPSK调制方式下具有最优性能,其误码率在信噪比为8 dB时可达到10-5以下,优于传统连续相位调制(Continuous Phase Modulation,CPM)下的OFDM-LFM系统3.5 dB;一体化信号系统经过脉冲压缩处理后,具有5.9 m的最佳距离分辨率和2.04081 m/s的速度分辨率。
The integration of optical wireless communication (OWC) and lidar is proposed in this study to enhance the safety, radar target detection accuracy, and communication efficiency of unmanned ships. The orthogonal frequency division multiplexing-linear frequency modulation (OFDM-LFM) system is utilized for this purpose. In order to examine absorption, scattering, and the impact of water surface fluctuations on optical signals, the optical characteristics of the water surface are modeled using the Beer-Lambert law, Rayleigh scattering, and the Fresnel formula. The bit error rate (BER) performance of the integrated system is analyzed under four modulation schemes: 16-quadrature amplitude modulation (16QAM), quadrature phase shift keying (QPSK), binary phase shift keying (BPSK), and minimum shift keying (MSK). Pulse compression technology is introduced in this study to enhance distance resolution while maintaining a radar velocity resolution for the integrated system. Simulation results indicate that optimal performance is achieved by employing BPSK modulation with a BER below 10-5 at a signal-to-noise ratio of 8 dB. The performance achieved by employing BPSK modulation surpasses traditional continuous phase modulation (CPM) modulation in OFDM-LFM systems by 3.5 dB. After pulse compression processing, the integrated signal system exhibits superior distance resolution of 5.9 m and velocity resolution of 2.04081 m/s.
2024,46(19): 100-106 收稿日期:2023-12-4
DOI:10.3404/j.issn.1672-7649.2024.19.017
分类号:TN249;U661
基金项目:国家自然科学基金资助项目(62265010,61875080);广东省企业科技特派员项目(GDKTP2021041300)
作者简介:封斌(1974-),男,博士,高级工程师,研究方向为船联网、船岸协同感知、航道感知
参考文献:
[1] WANG Jia, XIAO Yang, LI Tieshan, et al. A survey of technologies for unmanned merchant ships[J]. IEEE ACCESS, 2020, 8: 224461-224486.
[2] 冯炜, 崔东华, 夏天冰, 等. 国外无人船集群运用特点分析及其应对启示[J]. 中国舰船研究, 2023, 18(1): 1-12.
FENG Wei, CUI Donghua, XIA Tianbing, et al. Analysis of characteristics of foreign unmanned surface vehicle swarm combat application and propo-sed countermeasures[J]. Chinese Journal of Ship Research, 2023, 18(1): 1-12.
[3] 朱全, 刘润琪. 无线光通信技术在海上通信中的应用探讨[J]. 舰船科学技术, 2022, 44(12): 121-125.
ZHU Quan, LIU Runqi. Discussion on application of free space opt-ical communication technology in maritime communication[J]. Ship Science and Technology, 2022, 44(12): 121-125.
[4] 庄加兴, 焦侬, 殷非. 毫米波雷达与激光雷达在无人船上的应用[J]. 船舶工程, 2019, 41(11): 79-82.
ZHUANG Jiaxing, JIAO Nong, YIN Fei, et al. Application of MMW Radar and LIDAR in MASS[J]. Ship Engineering, 2019, 41(11): 79-82.
[5] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467-484.
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communicatio-n spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467-484.
[6] 刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801-808.
LIU Bingfan, CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics & Information Technology, 2019, 41(4): 801-808.
[7] 赵玉振, 陈龙永, 张福博, 等. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报, 2021, 10(3): 453-466.
ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, et al. A newmethod of joint radar and communication waveform design andsignal proce-ssing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466.
[8] 王冠, 康勇, 王金宇, 等. OFDM-CPM-LFM雷达通信一体化信号研究[J]. 微电子学与计算机, 2023, 40(8): 80-86.
WANG Guan, KANG Yong, WANG Jinyu, et a1. Research on integrated signal of OFDM-CPM. LFM radar communication[J]. Microelectron-ics& Computer, 2023, 40(8): 80-86.
[9] JIANG Y, WANG M, ZHU X, et al. Superposition based nonlinearity mitigation for ACO-OFDM optical wireless communications[J]. IEEE Wireless Communications Letters, 2021, 10(3): 469-473.
[10] 曹明华, 武鑫, 王惠琴, 等. Gamma-Gamma大气湍流下超奈奎斯特光通信系统性能[J]. 中国激光, 2020, 47(9): 0906003.
CAO Minghua, WU Xin, WANG Huiqin, et al. Performance of faster-than-nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 2020, 47(9): 0906003.
[11] 曾浩, 吉利霞, 李凤, 等. 16QAM-LFM雷达通信一体化信号设计[J]. 通信学报, 2020, 41(3): 182-189.
[12] 贺占权, 李晓青, 倪远涵. 基于变速率的高吞吐率LFM-BPSK一体化波形[J]. 计算机应用与软件, 2020, 37(5): 114-117,176.
[13] 刘耀文, 饶烜, 朱炳祺. 基于弱目标积累检测的MSK-LFM一体化信号性能分析[J]. 上海航天(中英文), 2022, 39(3): 38-45.
[14] CASASANTA G, FALCINI F, GARRA R. Beer–Lambert law in photochemist-ry: A new approach[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432: 114086.
[15] VINOGRADOV A P, SHISHKOV V Y, DORONIN I V, et al. Quantum theory of Rayleigh scattering[J]. Optics Express, 2021, 29(2): 2501-2520.
[16] XIE Y, SENGUPTA M, HABTE A, et al. The “fresnel equations” for diffu-se radiation on inclined photovoltaic surfaces (FEDIS)[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112362.
[17] YOUSSEF A, DRIESSEN P F, GEBALI F, et al. On time compression overlap-add technique in linear frequency modulation pulse compression radar systems: design and performance evaluation[J]. IEEE ACCESS, 2017, (5): 27525-27537.
[18] 贺锋涛, 杜迎, 张建磊, 等. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究[J]. 物理学报, 2019, 68(16): 230-238.