为保证海上发射平台导流槽结构安全,明确海上发射过程中火箭燃气流对导流槽结构的影响,针对半潜式发射平台双侧楔型导流槽结构强度进行研究,提出一种基于CFD模型计算的燃气流载荷转换为结构有限元模型载荷的方法,并利用直接计算法及显式动力学求解方法,对导流槽区域进行静态与动态结构强度分析,参照CCS以及DNV相应规范进行校核。计算结果表明,一体化式导流槽最大应力位置在导流槽支撑结构两侧,应力值为304 MPa,最大塑性应变位置在导流面下方支撑结构的圆形开孔处,应变值为1.61×10-3。可拆解式导流槽最大应力位置出现在导流面与两侧结构连接处,应力值为321 MPa,最大塑性应变位置在导流面下方支撑结构的圆形开孔处,应变值为1.76×10-3,均满足规范要求。
In order to ensure the structural safety of the flame deflector of the offshore launch platform and to clarify the impact of the rocket gas flow on the flame deflector structure during the offshore launch process, this paper was based on the study of the double-side wedge-type flame deflector of the semi-submersible sea launch platform. A method for converting the gas flow load calculated by the CFD model into the structural finite element model load was proposed. The static and dynamic structural strength analysis of the flow channel area was performed using the direct calculation method and the explicit dynamic solution method, and the verification is carried out in accordance with the corresponding specifications of CCS and DNV. The calculation results showed that the maximum stress of the integrated flame deflector is located at the two sides of the channel support structure, with a stress value of 304 MPa, and the maximum plastic strain is located at the circular aperture of the support structure underneath the flame deflector surface, with a strain value of 1.613×10-3. The maximum stress of the detachable flame deflector is located at the connection between the flame deflector surface and the two sides of the structure, with a stress value of 321 MPa and the maximum plastic strain is located at the circular aperture of the support structure underneath the flame deflector surface, with a strain value of 1.756×10-3, both meeting the requirements of the specifications.
2024,46(19): 118-122 收稿日期:2023-11-7
DOI:10.3404/j.issn.1672-7649.2024.19.020
分类号:U661.43
基金项目:江苏省自然科学基金资助项目(BK20231255)
作者简介:王昊(1995-),男,硕士研究生,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 尚辉, 王未, 孟翔, 等. “长征”海射投入商业运营, 未来全球发射服务可期[J]. 国际太空, 2020(11): 8-10.
SHANG Hui, WANG Wei, MENG Xiang, et al. “Long March” sea-launched into commercial operation, future global launch services expected [J]. Space International, 2020 (11): 8-10.
[2] 宋永生, 邵旭东, 李铎, 等. 固体运载火箭海上发射需求及应用前景分析[J]. 中国航天, 2019(6): 13-16.
SONG Yongsheng, SHAO Xudong, LI Duo, et al. Analysis of the demand for solid carrier rocket launches at sea and prospects for their application[J]. Aerospace China, 2019(6): 13-16.
[3] 刘利宏, 张志成, 周旭. 航天发射场导流槽综合性能评价指标体系研究[J]. 载人航天, 2014(5): 233-237.
LIU Lihong, ZHANG Zhicheng, ZHOU Xu. Research on global performance design method of blast deflector in rocket launch site[J]. Manned Spaceflight, 2014(5): 233-237.
[4] 周志坛, 乐贵高, 梁晓扬, 等. 多喷管运载火箭尾焰对导流槽的冲击特性研究[J]. 工程热物理学报, 2019, 40(9): 2027-2035.
ZHOU Zhitan, LE Guigao, LIANG Xiaoyang, et al. Impact characteristics of multi-nozzle launch vehicle exhaust plumes on blast deflector[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2027-2035.
[5] 乔野, 聂万胜, 丰松江, 等. 多喷管液体火箭动力系统尾焰流场特性研究[J]. 推进技术, 2017, 38(2): 356-363.
QIAO Ye, NIE Wansheng, FENG Songjiang, et al. Research on plume impact characteristics of multi-nozzle rocket propulsion system[J]. Journal of Propulsion Technology, 2017, 38(2): 356-363.
[6] GIORDAN P, FLEURY P, GUIDON L. Simulation of water injection into a rocket motor plume[R]. AIAA: 99-2517.
[7] 郑浩. 火箭海上发射平台燃气排导及运动特性研究[D]. 南京: 南京理工大学, 2021.
[8] 林瞳. 一种适用于海上航天发射平台的导流槽装置[P]. 中国专利: 202211250806.7, 2022-10-13.
[9] 张玲, 巩庆涛, 李涛, 等. 基于k-ω SST模型的海上热发射单喷管运载火箭流场仿真[J]. 中国海洋平台, 2023, 38(4): 57-62.
ZHANG Ling, GONG Qingtao, LI Tao, et al. Simulation of Flow Field of Single-Nozzle Launch Vehicle for Offshore Thermal Launch Based on k-ω SST Model[J]. China Offshore Platform, 2023, 38(4): 57-62.
[10] VERITAS D N. Determination of structural capacity by non-linear finite element analysis methods: DNVGL-RP-C208[S]. Oslo, Norway: Det Norske Veritas, 2016.
[11] 中国船级社. 海上移动平台入级规范[S]. 北京: 人民交通出版社, 2023.