船舶的动态协同路径规划是船舶安全航行的重要保证。本文对多船舶交汇且航线上存在障碍物情况下的船舶动态路径规划进行研究,对动态协同路径规划进行数学描述,使用模拟退火算法、遗传算法对静态路径规划进行仿真,并对仿真结果进行对比和分析。提出多船交汇的协同策略,以两船交汇动态协同路径规划为例进行仿真研究。结果表明,2种算法均可实现船舶路径规划,在多船交汇时船舶能够按照规划的路线主动转向,并最终实现安全航行。
Ship dynamic cooperative path planning is an important guarantee for ship safe navigation. In this paper, ship dynamic path planning under the condition of multi-ship intersection and obstacles on the route is studied, dynamic collaborative path planning is described mathematically, simulated annealing algorithm and genetic algorithm are used to simulate static path planning, and the simulation results are compared and analyzed. The collaborative strategy of multi-ship intersection is proposed, and the simulation research is carried out by taking the dynamic collaborative path planning of two-ship intersection as an example. The results show that both algorithms can realize the ship path planning, and the ship can actively turn according to the planned route when multiple ships meet, and finally achieve safe navigation.
2024,46(19): 161-164 收稿日期:2024-4-29
DOI:10.3404/j.issn.1672-7649.2024.19.029
分类号:U667.65
作者简介:习凤(1988-),女,硕士,讲师,研究方向为物流工程技术
参考文献:
[1] 陈雯琦. 多无人机协同目标追踪的路径规划研究[D]. 西安:西安工业大学, 2024.
[2] 戴晟潭, 王寅, 尚晨晨. 基于深度强化学习的多无人车协同路径规划方法[J/OL]. 北京航空航天大学学报, 1–12, 2024.
DAI Chengtan, WANG Yin, SHANG Chenchen. A method of multi-UAV cooperative path planning based on deep reinforcement learning [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1–12, 2024.
[3] 方城亮, 杨飞生, 潘泉. 基于MASAC强化学习算法的多无人机协同路径规划[J]. 中国科学: 信息科学, 2024, 54(8): 1871-1883.
FANG Chengliang, YANG Feisheng, PAN Quan. Multi-UAV cooperative path planning based on MASAC reinforcement learning algorithm[J]. Science China: Information Sciences, 2024, 54(8): 1871-1883.
[4] 屈禹先. 基于自适应策略约束条件下多源异构体的学习路径规划研究[D]. 西安:西安理工大学, 2024.
[5] 冒如权, 丁峰, 杨恒瑞. 多无人船协同多目标遍历路径规划[J]. 船舶工程, 2024, 46(5): 97-102.
MAO Ruquan, DING Feng, YANG Hengrui. Multi-UUV cooperative multi-target traversal path planning[J]. Ship Engineering, 2024, 46(5): 97-102.
[6] 王健雄, 包菊芳. 融合多策略改进的蚁群算法机器人路径规划研究[J]. 重庆工商大学学报(自然科学版), 2024, 8(1): 1-9.
WANG Jianxiong, BAO Jufang. Research on robot path planning based on multi-strategy improved ant colony algorithm[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2024, 8(1): 1-9.