为研究空爆载荷下冲击波与随机分布破片联合作用下夹层板毁伤特性问题,基于模拟的随机破片场实现了冲击波与破片联合作用下的夹层板结构响应分析。使用LS-DYNA有限元软件,以折叠式金属夹层板为研究对象,根据炸药药量及外壳厚度生成面积分布满足概率函数要求的破片场,在验证仿真方法有效性的前提下,开展系列仿真分析金属夹层板结构损伤情况。结果表明,在同密集度不同分布随机破片工况下,夹层板损伤模式相近。不同密集度情况下,随着破片密集度的上升,夹层板整体破口面积减小,吸能效果下降。该研究成果对船舶结构抗爆设计及相关规范的制定具有参考意义。
In order to study the damage characteristics of sandwich panels under the combined action of shock wave and randomly distributed fragments under airburst load, this paper realizes the structural response analysis of sandwich panels under the combined action of shock wave and fragments based on the simulated random fragmentation field. Structural response of the folded metal sandwich plate under air explosion is studied using the explicit finite element package LS-DYNA. According to the quantity of explosive and the thickness of the shell, a fragment field whose area distribution meets the requirements of the probability function is generated, a series of simulations are carried out to analyze the damage of the metal sandwich plate structure on the premise of verifying the effectiveness of the simulation method. The results show that the damage patterns of sandwich panels are similar in the case of random fragmentation with different distributions at the same density. Under different densities, the overall fracture area of the sandwich panel decreases with the increase of fragment density, and the energy absorption effect decreases. The research work has reference significance for the anti-blast design of ship structures.
2024,46(20): 5-11 收稿日期:2023-12-4
DOI:10.3404/j.issn.1672-7649.2024.20.002
分类号:U661.43
基金项目:国家自然科学基金资助项目(52171311,52271279)
作者简介:刘楚豪(2000-),男,硕士,研究方向为结构动力学与响应
参考文献:
[1] HAROLD L B. Numerical solutions of spherical blast waves[J]. Journal of Applied Physics, 1955, 26(6): 766-775.
[2] HENRYCH J. The dynamic of explosion and its use[M]. Printed in Czechoslovakia, 1979.
[3] LIU H, CAO Z K, YAO G C, et al. Performance of aluminum foam–steel panel sandwich composites subjected to blast loading[J]. Materials & Design, 2013, 47: 483-488.
[4] 赵卉. 空爆载荷下夹层板损伤机理研究[D]. 镇江: 江苏科技大学, 2012.
[5] HE Y, LIU Z, LI M, et al. The damage to thick steel plates by local contact explosions[J]. Materials, 2023, 16(8): 2966.
[6] 李铁鹏, 乔相信, 于锋, 等. 定向驱动预制破片战斗部数值模拟与试验[J]. 弹箭与制导学报, 2013, 33(1): 89-92.
[7] 吴港, 王昕, 纪冲, 等. 高速破片与爆炸冲击波对钢板联合作用的数值模拟分析[J]. 火工品, 2021(3): 24-28.
[8] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea–steel composite structure subjected to combined actions of blast and fragments[J]. Thin-Walled Structures, 2022, 178: 109527.
[9] ZHANG P, MO D, GE X, et al. Experimental investigation into the synergetic damage of foam-filled and unfilled corrugated core hybrid sandwich panels under combined blast and fragment loading[J]. Composite Structures, 2022, 299: 116089.
[10] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6): 6-13.
[11] MOTT N F, GRADY D. A theory of the fragmentation of shells and bombs[J]. Fragmentation of Rings and Shells: The Legacy of NF Mott, 2006: 243-294.
[12] 宋彬, 黄正祥, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究[J]. 振动与冲击, 2016, 35(7): 138-144.
[13] 赵鹏铎, 张鹏, 张磊, 等. 聚脲涂覆钢板结构抗爆性能试验研究[J]. 北京理工大学学报, 2018, 38(2): 118-123.
[14] 尹峰, 张亚栋, 方秦. 常规武器爆炸产生的破片及其破坏效应[J]. 解放军理工大学学报(自然科学版), 2005(1): 50-53.