基于复合材料三维力学模型和Hashin失效准则,结合商用软件ABAQUS二次开发技术,编写定义复合材料力学行为的VUMAT子程序,同时采用CEL方法,研究激波管产生的冲击波载荷作用下复合夹芯结构的动态响应。通过与实验结果的对比分析,验证数值模型的准确性,进而探讨夹芯板的面板芯材厚度比、泡沫芯材密度梯度对夹芯板能量耗散特性的影响。结果表明,复合夹芯板吸收的总能量随着面板芯层厚度比增加而减小,芯层吸收的能量占据了夹芯板总吸收能量的65%~80%之间,随着芯层厚度比的增加而减小;渐增密度的芯层排列方式不仅使结构抵抗破坏的能力增强,同时还能使夹芯结构吸收能量效率提升。
Based on the three-dimensional mechanical model of composites and Hashin failure criterion, a VUMAT subroutine defining the mechanical behavior of composites is compiled in this paper. Combined with the secondary development technology of commercial software ABAQUS and cel method, the dynamic response of composite sandwich structure under shock wave load generated by shock tube is studied. Through the comparative analysis with the experimental results, the accuracy of the numerical model is verified, and then the influence of the panel core thickness ratio of the sandwich panel on the deformation and energy absorption characteristics of the sandwich panel is discussed. The results show that the total energy absorbed by the composite sandwich panel decreases with the increase of the core layer thickness ratio. The energy absorbed by the core layer accounts for 65% to 80% of the total energy absorbed by the composite sandwich panel, and decreases with the increase of the core layer thickness ratio. The increasing density of the core layer arrangement not only enhances the ability of the structure to resist damage, but also improves the energy absorption efficiency of the sandwich structure.
2024,46(20): 17-22 收稿日期:2023-12-11
DOI:10.3404/j.issn.1672-7649.2024.20.004
分类号:U661.4
作者简介:李闯闯(1992-),男,硕士,工程师,研究方向为复合材料爆炸与冲击力学性能
参考文献:
[1] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of Solids and Structures, 2006, 43(7): 2243-2259.
[2] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [J]. In: The cientific papers of G I Taylor,1941, 3: 287-303.
[3] GERARD S H. The impact tube. A new experimental technique for applying impulse loads[J]. International Procedding Symposium On Impact Testing, 1954: 94-109.
[4] 李念. 复合材料加筋板边缘冲击损伤及冲击后压缩失效机理分析[D]. 南京: 南京航空航天大学, 2016.
[5] CHING Y H. A numerical study on the underwater explosion bubble pulsation and the collapse process[J]. Ocean Engineering, 2014, 81: 29-38.
[6] AVACHAT S. Experimental and numerical analyses of dynamic deformation and failure in marine structures subjected to underwater implusive loads[D]. America: School of Materials Science and Engineering, Georgia Institute of Technology, 2012.
[7] AVACHAT S, ZHOU M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2015, 77: 147-165.