以某典型风机安装船为例,在GeniE软件中对该型船舶主船体和桩腿进行结构建模,运用软件HydroD进行频域运动响应计算,再将计算结果作为输入参数运用OrcaFlex软件对船舶进行动力定位定点作业数值仿真分析。数值计算结果表明,在150~180°环境力方向下船舶定位效果最理想,一组推进器失效的工况下船舶仍能保持动力定位效果。因此针对船舶装载三套风机设备时处于150°和165°环境力方向的工况开展水池模型试验,并将实验结果和数值结果进行对比,为实际海上工程作业提供理论指导。
Taking a typical WTIV as an example, the main hull and pile legs are structurally modelled in GeniE software, and the frequency domain motion response is calculated by HydroD, and then the results of the calculations are used as input parameters for the numerical simulation analysis of the ship’s dynamic positioning in OrcaFlex. The numerical calculation results show that the ship's positioning effect is the most ideal under the direction of 150-180 degrees environmental force, and the ship can still maintain the dynamic positioning effect under the working condition of one set of propeller failure. The wave basin test is carried out for the working condition of the ship loading three sets of wind turbine equipment at 150 degrees and 165 degrees of environmental force direction, and the experimental results are compared with the numerical results to provide theoretical guidance for the actual offshore engineering operations.
2024,46(20): 28-36 收稿日期:2023-12-13
DOI:10.3404/j.issn.1672-7649.2024.20.006
分类号:U674.3
作者简介:徐福强(1998-),男,硕士,研究方向为动力定位
参考文献:
[1] 屠海洋, 王思铭, 高家镛, 等. 超大型风电安装船的操纵性和动力定位能力分析[J]. 中国航海, 2016, 39(1): 74-78.
TU Haiyang, WANG Siming, GAO Jiayong, et al. Analysis of maneuverability and dynamic positioning capability of ultra large wind power installation ships[J]. Chinese Navigation, 2016, 39(1): 74-78.
[2] 张建文, 张巍. 海上风电发展相关船舶探究[J]. 船电技术, 2023, 43(10): 48-53.
ZHANG jianwen, ZHANG Wei. Exploration of ships related to the development of offshore wind power[J]. Ship Electrical Technology, 2023, 43(10): 48-53.
[3] SMITH I A A, LEWIS T C, Miller B L, et al. Limiting motions for jack-ups moving onto location[J]. Marine Structures, 1996, 9,(1): 25-51.
[4] ZHAO Y N, CHENG Z S, GAO Z, et al. Numerical study on the feasibility of offshore single blade installation by floating crane vessels[J]. Marine Structures, 2019, 64: 442-462.
[5] 田晓洁, 王清扬, 刘贵杰等. 自升式平台桩腿水动力系数实验研究[C]// 第十八届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2017.
[6] JAGADEESH P, MURALI K, IDICHANDY V G. Experimental investigation of hydrodynamic force coefficients over AUV hull form[J]. Ocean Engineering, 2009, 36: 113-118.
[7] LOPEZ-PAVON C, SOUTO-IGLESIAS A. Hydrodynamic coefficients and pressure loads on heave plates for semi-submersible floating offshore wind turbines: A comparative analysis using large scale models[J]. Renewable Energy, 2015, 81: 864-881.
[8] LI Y, LIN M. Hydrodynamic coefficients induced by waves and currents for submerged circular cylinder[J]. Procedia Engineering, 2010, 4: 253-261.
[9] 王元慧, 张潇月, 王成龙. 船舶系泊动力定位控制技术综述[J]. 哈尔滨工程大学学报, 2023, 44(2): 172-180.
WANG Yuanhui, ZHANG Xiaoyue, WANG Chenglong. Overview of ship mooring dynamic positioning control technology[J]. Journal of Harbin Engineering University, 2023, 44(2): 172-180.
[10] 吴德烽, 杨国豪. 船舶动力定位关键技术研究综述[J]. 舰船科学技术, 2014, 36(7): 1-6.
WU Defeng, YANG Guohao. Overview of key technologies for ship dynamic positioning research[J]. Ship Science and Technology, 2014, 36(7): 1-6.
[11] 余培文, 陈辉, 刘芙蓉. 船舶动力定位系统控制技术的发展与展望[J]. 中国水运, 2009(2): 44-45.
YU Peiwen, CHEN Hui, LIU Furong. Development and prospect of control technology for ship dynamic positioning system[J]. China Water Transport, 2009(2): 44-45.
[12] REN Z R, SKJETNE R, VERMA A S, et al. Active heave compensation of floating wind turbine installation using a catamaran construction vessel[J]. Marine Structures, 2021, 75(1): 1-15.
[13] HUANG W, CHEUNG T O, et al. How the first jones act compliant wind turbine installation vessel is helping to develop the U. S. offshore wind supply chain[C]// Offshore Technology Conference. Houston, Texas, USA, 2022.
[14] 张天宇, 王金光, 李磊, 等. 半潜式起重平台动力定位能力分析[J]. 中国海洋平台, 2011, 26(3): 53-56.
[15] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine (S0272-1708), 2009, 29(6): 32-46.
[16] 张秀凤, 尹勇. 规则波中船舶运动六自由度数学模型[J]. 交通运输工程学报, 2007, 7(3): 40-43.
ZHANG Xiufeng, YIN Yong. Six degree of freedom mathematical model of ship motion in regular waves[J]. Journal of Transportation Engineering, 2007, 7(3): 40-43.
[17] 成昊, 王丽铮. 风电安装船桁架式桩腿结构分析与优化[J]. 舰船科学技术, 2023, 45(4): 80-84.
CHENG Hao, WANG Lizheng. Analysis and optimization of truss pile leg structure for wind power installation ship[J]. Ship Science and Technology, 2023, 45(4): 80-84.
[18] FOSSEN T I. Guidance and control of ocean vehicles [M]. UK: John Wiley and Sons, 1994: 307–320.
[19] 钱小斌, 尹勇, 神和龙, 等. 船舶动力定位控制算法测试仿真系统[J]. 系统仿真学报, 2016, 28(9): 2028-2034.
QIAN Xiaobin, YIN Yong, SHEN Helong, et al. Testing and simulation system for ship dynamic positioning control algorithm[J]. Journal of System Simulation, 2016, 28(9): 2028-2034.
[20] DNV. Dynamic positioning systems[S]. Det Norske Veritas, 2013.