为研究深潜器在不同上浮姿态下的水动力特性,本文对1∶36的“蛟龙”号深潜器缩比简化模型进行水动力试验。通过六分量传感器得到不同上浮姿态下深潜器的阻力、升力和俯仰力矩,基于傅里叶变换方法获得升力功率谱;利用粒子图像测速法拍摄深潜器尾流流场,基于本征正交分解(POD)方法获得流场主要模态。结果表明,相比于垂直上浮姿态,以30°纵倾角上浮时阻力下降了38.2%,升力大小上涨了98.9%,俯仰力矩下降了20.8%,尾部尾流区漩涡消失,最大湍动能下降了33.6%;POD一阶模态下,上浮纵倾角从0°增加到10°,尾部尾流逆流区域面积减小,首部尾流高速区域面积增加,导致首部压力下降,尾部压力增大,使得升力方向发生改变。
In order to study the hydrodynamic characteristics of the manned deep-sea submersible in different surfacing attitudes, this paper carries out hydrodynamic tests on the scaled-down simplified model of the Jiaolong deep submersible of 1:36. The drag, lift and pitching moment of the submersible in different surfacing attitudes are obtained by six-component sensors, and the lift power spectrum is obtained based on the Fourier transform method; the flow field in the wake of the submersible is captured by the particle image velocimetry method, and the main modes of the flow field are obtained based on the intrinsic orthogonal decomposition (POD) method. The results show that, compared with the vertical surfacing attitude, the drag drops by 38.2%, the lift magnitude rises by 98.9%, the pitching moment drops by 20.8%, the vortex disappears in the stern wake area, and the maximal turbulent kinetic energy drops by 33.6% when surfacing at a 30° longitudinal rake angle; the increase of the surfacing longitudinal rake angle from 0° to 10° shifted the wake countercurrent area from the bow of the submersible to the stern, which resulted in the change of lift direction. In the POD first-order mode, the surfacing rake angle increases from 0° to 10°, the area of the stern wake countercurrent region decreases, and the area of the bow wake high-velocity region increases, resulting in a decrease in the bow pressure and an increase in the stern pressure, which makes the direction of lift change.
2024,46(20): 37-42 收稿日期:2024-1-15
DOI:10.3404/j.issn.1672-7649.2024.20.007
分类号:U674.941
基金项目:江苏省自然科学基金资助项目(BK20191459)
作者简介:王杉(2001-),男,硕士研究生,研究方向为海工装备数字化设计理论与方法
参考文献:
[1] 徐芑南, 胡震, 叶聪, 等. 载人深潜技术与应用的现状和展望[J]. 前瞻科技, 2022, 1(2): 36-48.
[2] 李志伟, 崔维成. 第三代全海深载人潜水器“深海挑战者”的阻力特性分析[J]. 水动力学研究与进展A辑, 2013, 28(1): 1-9.
[3] TAYLOR L, LAWSON T. Project deepsearch: an innovative solution for accessing the oceans[J]. Marine Technology Society Journal, 2009, 43(5): 169-177.
[4] HAWKES G. The old arguments of manned versus unmanned systems are about to become irrelevant: new technologies are game changers[J]. Marine Technology Society Journal, 2009, 43(5): 164-168.
[5] 徐芑南, 张海燕. 蛟龙号载人潜水器的研制及应用[J]. 科学, 2014, 66(2): 11-13.
[6] 姜哲, 陆斌, 谭纶, 等. 全海深载人潜水器下潜运动型线优化[J]. 船舶工程, 2022, 44(1): 128-136.
[7] PRANESH S B, RAJPUT N S, SATHIANARAYANAN D, et al. CFD analysis of the hull form of a manned submersible for minimizing resistance[J]. Journal of Ocean Engineering and Marine Energy, 2022: 1-19.
[8] 孙鹏飞, 姜哲, 崔维成, 等. 基于CFD的全海深载人潜水器直航阻力性能研究[J]. 中国造船, 2019, 60(2): 77-87.
[9] LI Hao, LI Zhiwei, CUI Weicheng. A preliminary study of the resistance performance of the three manned submersibles with full ocean depth[J]. Journal of Ship Mechanics, 2013, 17(12): 1411-1425.
[10] 李德军, 张伟, 王磊, 等. 海流作用下潜水器运动仿真研究[J]. 舰船科学技术, 2023, 45(11): 13-16.
[11] WANG J, LUAN S, ZHU J, et al. Fourier mode decomposition of unsteady flows in a single injection port fluidic thrust vectoring nozzle[J]. International Journal of Aeronautical and Space Sciences, 2020: 1-16.
[12] WALEED K A, MAHMOUD A A, M Z A. Fourier decomposition and anisotropic diffusion filtering of forced turbulence[J]. International Journal of Applied Mechanics, 2017, 09(8): 1750121.
[13] ZHAO Xiaoyu, CHEN Xiaoqian, GONG Zhiqiang, et al. RecFNO: A resolution-invariant flow and heat field reconstruction method from sparse observations via fourier neural operator[J]. International Journal of Thermal Sciences, 2024, 195.
[14] ZHANG Q, LIU Y, WANG S. The Identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition[J]. Journal of Fluids and Structures, 2014, 49: 53-72.
[15] MING L, QIUSHENG L, HAOYUN S, et al. Effects of free-stream turbulence on the near wake flow and aerodynamic forces of a square cylinder[J]. Journal of Fluids and Structures, 2022, 114.
[16] FAWAZ A, A M E C W, PABLO O. Unsteady vortex shedding dynamics behind a circular cylinder in very shallow free-surface flows[J]. Computers and Fluids, 2023, 260.
[17] HIROKA R. Three-dimensional wake structures over a short cylinder having a fore angled hole[J]. Ocean Engineering, 2023, 271.
[18] BABU P MAHESH K. Aerodynamic loads on cactus-shaped cylinders at low reynolds numbers[J]. Physics of Fluids, 2008, 20(3): 482-376.
[19] LIU Z Y, SHI L L, YU J. TR-PIV measurement of the wake behind a grooved cylinder at low reynolds number[J]. Journal of Fluids and Structures, 2010, 27(3): 394-407.
[20] ZHENG Y, RINOSHIKA A. Analysis of particle dynamics in a horizontal pneumatic conveying of the minimum pressure drop based on pod and wavelet Transform[J]. Powder Technology, 2017, 320: 726-738.