晃荡载荷是大型液货船结构设计中的关键问题之一。本文基于数值模拟方法研究液舱在大幅激励下的晃荡特性问题,考虑的因素包括装载率、大幅横荡激励、大幅横荡-垂荡激励。采用基于有限体积法的CFD代码Fluent求解器,通过动网格技术驱动液舱运动并用VOF法追踪自由液面的非线性运动过程。研究结果表明,在大幅激励下,液体一阶固有频率偏离理论值;随着激励幅值的增大,晃荡压力呈线性增加到非线性增加,最终达到饱和的变化特性;对比受大幅横荡-垂荡耦合激励的液舱和受大幅横荡激励的液舱,其压力特性在低装载下相似,而中、高装载下,受大幅横荡-垂荡激励的液舱晃荡压力更高。
Sloshing load is one of the key problems in the structural design of large liquid cargo ships. In this paper, the sloshing characteristics of liquid tanks under large amplitude excitation are studied based on numerical simulation method. The factors considered include loading rate, large amplitude sway excitation and large amplitude sway heave excitation. In this paper, the CFD code Fluent solver based on the finite volume method is used to drive the tank motion through the dynamic grid technology, and the VOF method is used to track the nonlinear motion process of the free surface. The results show that the first natural frequency of liquid deviates from the theoretical value under large amplitude excitation; With the increase of excitation amplitude, the sloshing pressure increases linearly to nonlinearly, and finally reaches saturation; Compared with the tank excited by large sway heave coupling, the pressure characteristics of the tank excited by large sway are similar under low loading, while the sloshing pressure of the tank excited by large sway heave is higher under medium and high loading.
2024,46(20): 43-49 收稿日期:2024-1-8
DOI:10.3404/j.issn.1672-7649.2024.20.008
分类号:U663.85
基金项目:江苏省海洋资源开发研究院开放基金项目(JSIMR202009)
作者简介:龚宸(1996-),男,硕士研究生,研究方向为流固耦合动力学
参考文献:
[1] FALTINSEN O M. A nonlinear theory of sloshing in rectangular containers[J]. Journal of Ship Research, 1974, 18(4): 224-241.
[2] IBRAHIM R A. Liquid Sloshing Dynamics-Theory and Applications[M]. Cambridge: Cambridge University Press, 2005.
[3] 周骥, 张其林, 赵佳楠. ALE描述在流固耦合计算中的应用[C]//天津大学: 第五届全国现代结构工程学术研讨会论文集, 2005.
[4] 孙丰, 张家旭, 古彪, 等. 基于ALE法的水陆两栖飞机船体着水性能分析[J]. 航空计算技术, 2016, 46(3): 54-57.
[5] 王永学, T. C. Su. 圆柱容器液体晃动问题的数值计算[J]. 空气动力学学报, 1991(1): 112-119.
[6] 邹昶方. 液舱晃荡非线性动力学行为研究[D]. 上海: 上海交通大学, 2016.
[7] 陶建华, 谢伟松. 用LEVEL-SET方法计算溃坝波的传播过程[J]. 水利学报, 1999(10): 17-22.
[8] 高玉丽, 刘全辉. Level Set方法在自由面流动数值模拟中的应用[J]. 烟台师范学院学报(自然科学版), 2005(1): 14-16.
[9] 张会霞, 李师, 邹昶方. 横摇-垂荡复合激励下液舱晃荡的压力特性研究[J]. 舰船科学技术, 2022, 44(19): 22-27.
[10] 张会霞, 李师, 邹昶方, 等. 横摇-横荡复合激励下液舱晃荡的压力特性[J]. 广东海洋大学学报, 2023, 43(1): 111-118.
[11] 王德禹, 金咸定, 李龙渊. 液舱流体晃荡的模型试验[J]. 上海交通大学学报, 1998(11): 116-119.
[12] 邹昶方, 蔡忠华, 王德禹. 液舱在弹性支撑下的晃荡载荷试验研究[J]. 船舶力学, 2021, 25(1): 37-42.
[13] 杜祥璞. 壁面结构形式对流体晃荡的影响研究[D]. 大连: 大连理工大学, 2021.
[14] 王晨屹, 邹昶方, 袁晓楠, 等. 悬式多孔材料构件对液体晃荡影响的数值研究[J]. 水动力学研究与进展A辑, 2022, 37(5): 625-632.
[15] JIANG Shengchao, BAI Wei, LAN Junjie. Influence of a vertical baffle on suppressing sway motion response of a tank coupled with sloshing actions in waves[J]. Ocean Engineering, 2022, 260: 111999.
[16] HOU Ling, LI Fangcheng, WU Chunliang. A numerical study of liquid sloshing in a two-dimensional tank under external excitations[J]. Journal of Marine Science and Application, 2012, 11(3): 305-310.
[17] GURUSAMY Saravanan, SANAPALA V S, KUMAR Deepak, et al. Sloshing dynamics of shallow water tanks: Modal characteristics of hydraulic jumps[J]. Journal of Fluids and Structures, 2021, 104: 103322.
[18] 蒋梅荣, 任冰, 李小超, 等. 有限液深下弹性侧壁液舱内晃荡共振特性实验研究[J]. 大连理工大学学报, 2014, 54(5): 558-567.
[19] 于曰旻. 高载液率下矩形液舱晃荡的1阶共振[J]. 船舶工程, 2022, 44(6): 61-64+169.