为了进一步提升鲨鱼盾鳞仿生表面的减阻效果,开展鲨鱼盾鳞的单元结构参数优化设计。设计鲨鱼盾鳞仿生表面的单元结构模型,根据微结构尺寸无量纲公式计算单元结构参数的基本取值范围,采用数值模拟方法分析不同参数对减阻效果的影响,根据分析结果获得最佳的单元结构参数组合,通过数值模拟分析排布方式对减阻效果的影响。数值模拟结果表明,在1~9 m/s内,不同结构参数的鲨鱼盾鳞仿生表面均有减阻效果,其中当肋条角度为θ=75°、肋条宽度d=0.1 mm、肋条间距H=2 mm,表面减阻效果最好,减阻率最高可达到22.25%。盾鳞结构能够减缓边界层速度的增加,提高边界层流动的稳定性,最终实现减阻效果。
In order to further improve the drag reduction effect of shark shield scale bionic surface, the optimization design of unit structure parameters of shark shield scale is carried out. The unit structure model of the bionic surface of the shark shield scale is designed, and the basic value range of the unit structure parameters is calculated according to the dimensionless formula of the microstructure size, and the influence of different parameters on the drag reduction effect is analyzed by numerical simulation; the optimal combination of the unit structure parameters is obtained according to the analytical results, and the influence of the layout on the drag reduction effect is analyzed by numerical simulation. The numerical simulation results show that the shark shield scale bionic surfaces with different structural parameters have the drag reduction effect in 1~9 m/s, among which the surface has the best drag reduction effect when the rib angle is θ=75°, the rib width d=0.1 mm, and the rib spacing H=2 mm, and the drag reduction rate can reach 22.25% at the highest. The shield scale structure can slow down the increase of boundary layer velocity, improve the stability of boundary layer flow, and finally realize the drag reduction effect.
2024,46(20): 50-55 收稿日期:2024-2-29
DOI:10.3404/j.issn.1672-7649.2024.20.009
分类号:U661
基金项目:机械系统与振动国家重点实验室资助项目(MSV202310);长三角科技创新共同体联合攻关资助项目(2022CSJG1300)
作者简介:赖昭(2000-),女,硕士,研究方向为微结构减阻
参考文献:
[1] 王帅, 李淑江, 鉴冉冉, 等. 船舶减阻技术方法综述[J]. 船舶工程, 2023, 45(4): 66-78.
[2] BECHERT D W, BRUSE M, HAGE W, et al. Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157-171.
[3] BIXLER G D, BHUSHAN B. Fluid drag reduction with shark‐skin riblet inspired microstructured surfaces[J]. Advanced Functional Materials, 2013, 23(36): 4507-4528.
[4] CHAMORRO L P, ARNDT R E A, SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies[J]. Renewable Energy, 2013, 50: 1095-1105.
[5] 李恩田, 袁康, 刘洋, 等. 壁面微沟槽对输油管道阻力特性影响的数值研究[J]. 油气田地面工程, 2019, 38(6): 45-50.
[6] 霍鹏, 李建平, 杨欣, 等. 鲨鱼盾鳞仿生起苗铲减阻仿真分析[J]. 机械设计与制造, 2023(3): 242-248.
[7] DOMEL A G, SAADAT M, WEAVER J C, et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society Interface, 2018, 15(139): 20170828.
[8] CUI X, CHEN D, CHEN H. Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling[J]. ACS Omega, 2023, 8(9): 8569-8581.
[9] 胡海豹, 宋保维, 潘光, 等. 回转体表面条纹沟槽降噪水洞试验[J]. 火力与指挥控制, 2008(2): 139-141.
[10] 刘琪, 徐斌杰, JJONES C. 仿生微结构控制表面微生物污染的应用[J]. 中国消毒学杂志, 2021, 38(10): 770-773.
[11] MA Z, LU S, WU Y, et al. Pressure-activatable liquid metal composites flexible sensor with antifouling and drag reduction functional surface[J]. ACS Applied Materials & Interfaces, 2023: acsami. 3c12910.
[12] MA Z, LIU J, ZHANG X, et al. Flexible surfaces prepared through direct ink writing with drag reduction and antifouling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130233.
[13] 王春举, 程利冬, 薛韶曦, 等. 仿生减阻微结构制造技术综述[J]. 精密成形工程, 2019, 11(3): 88-98.
[14] 陈登科, 崔线线, 苏琳, 等. 仿鱼类表皮减阻研究现状与进展[J]. 中国表面工程, 2023, 36(5): 14-36.
[15] TIAN G, FAN D, FENG X, et al. Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges[J]. RSC Advances, 2021, 11(6): 3399-3428.
[16] YAN M, GU Y, MA L, et al. Slime-groove drag reduction characteristics and mechanism of marine biomimetic surface[J]. Applied Bionics and Biomechanics, 2022: 1-19.
[17] 令狐克骑. 仿鲨鱼皮表面结构对翼型水动力性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
[18] 高美红. 基于鲨鱼皮表面微结构特征规律的仿生表面湍流减阻研究[D]. 长春: 吉林大学, 2023.
[19] 李永成, 张华. 平板仿生沟槽表面减阻性能数值模拟研究[J]. 舰船科学技术, 2023, 45(9): 28-31.
[20] WALSH M. Turbulent boundary layer drag reduction using riblets[C]//20th Aerospace Sciences Meeting, Orlando, FL, U. S. A. American Institute of Aeronautics and Astronautics, 1982.
[21] LEE S J, LEE S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluids, 2001, 30(2): 153-166.