为解决欠驱动自主水下机器人(AUV)在航行过程中的控制问题,提高其抵抗外部干扰的能力,设计一种新型控制器,该控制器以模型预测控制策略中的动态矩阵控制(DMC)方法为主回路控制器,其目的是通过模型预测与反馈校正的特点使AUV获得良好的跟踪能力。此外,副回路控制器采用频率较高的增量式PID的控制方法,通过优化模型预测向量,设计模型调控参数,最终获得反应速度良好的内回路控制器,其作用是快速抑制突发性扰动。最后,将此控制器应用于AUV首向与深度的仿真实验中,通过仿真实验,验证了该控制器不仅能够满足AUV的控制需求,同时在面对外部时变干扰时具有较好的鲁棒性。
In order to solve the control problem of underactuated autonomous underwater vehicle (AUV) during navigation and improve its ability to resist external interference, a new controller is designed. The controller takes the dynamic matrix control (DMC) method in the model predictive control strategy as the main loop controller. The purpose is to make AUV obtain good tracking ability through the characteristics of model prediction and feedback correction. In addition, the secondary loop controller adopts the incremental PID control method with high frequency. By optimizing the model prediction vector and designing the model control parameters, the internal loop controller with good response speed is finally obtained. Its role is to quickly suppress sudden disturbances. Finally, this controller is applied to the simulation experiment of AUV heading and depth. Through simulation experiments, it is verified that the controller can not only meet the control requirements of AUV, but also has good robustness in the face of external time-varying interference.
2024,46(20): 80-86 收稿日期:2023-12-25
DOI:10.3404/j.issn.1672-7649.2024.20.015
分类号:TP242.6
基金项目:国家重点研发计划资助项目(2020YFC1521704)
作者简介:王晓鸣(1981-),男,博士,副教授,研究方向为水下机器人运动控制
参考文献:
[1] JAGTAP P, RAUT P, KUMAR P, et al. Control of autonomous underwater vehicle using reduced order model predictive control in three dimensional space[J]. IfacPapersonline, 2016, 49(1): 772-777.
[2] PARIJAT BHOWMICK, SUBHASISH MAHAPATRA, ATANU PANDA. Employing NMPC scheme utilizing improved cubature Kalman filter for an AUV system[J]. IFAC-PapersOnLine, 2022, 55(22): 19–23.
[3] STEENSON L V , PHILLIPS A B, ROGERS E, et al. Experimental verification of a depth controller using model predictive control with constraints onboard a thruster actuated AUV[J]. IFAC Proceedings Volumes, 2012, 45(5): 275-280.
[4] GOMES R, PEREIRA F L. A general attainable-set model predictive control scheme. application to AUV operations[C]//IFAC Workshop on Control Applications of Optimization. 2019.
[5] CAVANINI L, MAJECKI P, GRIMBLE M J, et al, LPV-MPC path planner for autonomous underwater vehicles[J]. IFAC-PapersOnLine, 2021, 54(16): 301-306.
[6] 刘昌鑫, 高剑, 徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017, 36(11): 1653-1657.
LIU Changxin, GAO Jian, XU Demin. A model predictive path tracking control method for underactuated AUV[J]. Mechanical Science and Technology, 2017, 36(11): 1653-1657.
[7] 武建国, 刘杰, 陈凯. 时变干扰下AUV三维轨迹跟踪反步滑模控制[J]. 舰船科学技术, 2022, 44(7): 82-87.
WU Jianguo, LIU Jie, CHEN Kai. Backstepping sliding mode control for AUV three-dimensional trajectory tracking under time-varying disturbance [ J ]. Ship Science and Technology, 2022, 44(7): 82-87.
[8] 王晓伟, 姚绪梁, 夏志平, 等. 欠驱动AUV三维直线路径跟踪控制[J]. 控制工程, 2020, 27(6): 977-983.
WANG Xiaowei, YAO Xuliang, XIA Zhiping, et al. Three-dimensional straight-line path tracking control for underactuated AUV [ J ]. Control Engineering, 2020, 27(6): 977-983.
[9] 姚金艺, 曾庆军, 赵强. 全驱动型AUV三维路径跟踪控制系统设计及分析[J]. 中国舰船研究, 2019, 14(6): 22-29.
YAO Jinyi, ZENG Qingjun, ZHAO Qiang. Design and analysis of three dimensional path tracking control system for fully-actuated AUV [J]. China Ship Research, 2019, 14(6): 22-29.
[10] 高鹏, 万磊, 徐钰斐, 等. 基于无模型自适应控制的底栖式AUV路径点跟踪控制[J]. 水下无人系统学报, 2022, 30(4): 429-440.
GAO Peng, WAN Lei, XU Yufei, etal. Model-free adaptive control based path point tracking control for a benthic AUV [ J ]. Torpedo Technology, 2022, 30(4): 429-440.
[11] 李泽宇, 刘卫东, 李乐, 等. 基于RBF网络Q学习的AUV路径跟踪控制方法[J]. 西北工业大学学报, 2021, 39(3): 477-483.
LI Zeyu, LIU Weidong, LI Le, et al. AUV path tracking control method based on RBF network Q-learning[J]. Journal of Northwest Poly- technical University, 2021, 39(3): 477-483.
[12] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473+1481.
ZHAO Jiemei, HU Zhihui. AUV horizontal path tracking control based on dynamic feedback[J]. Journal of Zhejiang University: Engineering Edition, 2018, 52(8): 1467-1473+1481.
[13] 席裕庚. 预测控制[M]. 北京: 国防工业出版社, 1993.
[14] 孙坚栋, 苏烨, 李泉, 等. 动态矩阵控制误差权矩阵取值优化与仿真[J]. 电气自动化, 2021, 43(6): 43-52.
SUN Jiandong, SU Ye, LI Quan, et al. Optimization and simulation of dynamic matrix control error weight matrix[J]. Electrical automation, 2021, 43(6): 43-52.
[15] 曼吉德. DMC-PID串级控制及多变量广义预测控制算法研究[D]. 上海: 华东理工大学, 2023.