面向海斗号全海深水下机器人万米深潜对重力与浮力的匹配性需求,研究其跨越万米深度过程中因体积变化而引起其浮力变化的海洋环境因素影响机理,分析各海洋环境因素对海斗号重力与浮力匹配的影响;基于机理分析法,构建海斗号全海深水下机器人综合体积弹性模量数学模型,为面向不同深度的作业任务提供浮力配平依据,实现其对不同深度剖面的环境适应性;利用海斗号不同下潜深度的海上试验数据,验证了本文构建的海斗号全海深体积弹性模量模型的准确性,为全海深水下机器人深度剖面环境适应性实现方案提供了模型参考和理论依据。
Aiming at the matching requirements of gravity and buoyancy for the full-depth ocean underwater vehicle of Haidou in 10000 meter depth, the influence mechanism of Marine environmental factors on the change of buoyancy caused by volume change during the process of its 10000 meter depth crossing was studied, and the influence of various Marine environmental factors on the matching of gravity and buoyancy of Haidou was analyzed. Based on the mechanism analysis method, a comprehensive mathematical model of the bulk elastic modulus of the full-depth ocean underwater vehicle was constructed to provide a basis for buoyancy trim for tasks at different depths and realize its environmental adaptability to different depth profiles. Based on the sea test data of different diving depths of Haidou, the accuracy of the full-depth ocean bulk elastic modulus model of Haidou constructed in this paper is verified, and the model reference and theoretical basis are provided for the implementation plan of the underwater vehicle depth profile environment adaptability in the full-depth ocean.
2024,46(20): 87-93 收稿日期:2023-12-26
DOI:10.3404/j.issn.1672-7649.2024.20.016
分类号:TP242
基金项目:国家自然科学基金面上项目(62173320);辽宁省兴辽英才计划项目(XLYC1807234)
作者简介:卜林海(1998-),男,硕士研究生,研究方向为全海深水下机器人深度适应机理与方法
参考文献:
[1] JAMIESON A J, FUJII T, MAYOR D J, et al. Hadal trenches: The ecology of the deepest places on Earth[J]. Trends Ecology and Evolution. 2010, 25(3): 190-197.
[2] VAN HAREN H , BERNDT C , KLAUCKE I . Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench[J]. Deep-Sea Research, 2017, 129(11): 1-9.
[3] 唐元贵, 王健, 陆洋, 等. “海斗号”全海深自主遥控水下机器人参数化设计方法与试验研究[J]. 机器人, 2019, 41(6): 697-705.
TANG Yuangui, WANG Jian, LU Yang, et al. Parametric design method and experimental research on haidou full-depth ocean autonomous and remotely-operated vehicle.[J]. Robot, 2019, 41(6): 697-705.
[4] WU J , LIU J , XU H . A variable buoyancy system and a recovery system developed for a deep-sea AUV Qianlong I[C]//OCEANS 2014 - TAIPEI. IEEE, 2014.
[5] WANG J, TANG Y G, CHEN C X, et al. Terrain matching localization for hybrid underwater vehicle in the Challenger Deep of the Mariana Trench[J]. 信息与电子工程前沿(英文版), 2020, 21(5): 11–13.
[6] 李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J]. 中国科学院院刊, 2022, 37(7): 910-920.
LI Shuo, WU Yuantao, LI Chen, et al. Application and prospect of unmanned underwater vehicle[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 910-920.
[7] BEYER L A , VON HUENE R E , MCCULLOH T H , et al. Measuring gravity on the sea floor in deep water[J]. Journal of Geophysical Research, 1966, 71(8): 2091-2100.
[8] FRANK, J, MILLERO, et al. A new high pressure equation of state for seawater[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1980, 27(3-4): 255-264.
[9] 武建国, 徐会希, 刘健, 等. 深海AUV下潜过程浮力变化研究[J]. 机器人, 2014, 36(4): 455-460.
[10] 徐会希. 自主水下机器人[M]. 北京: 科学出版社, 2019.
[11] 姜言清, 李晔, 王友康, 等. 全海深水下机器人的重力和浮力计算[J]. 哈尔滨工程大学报, 2020, 41(4): 481-486.
JANG Yanqing, LI Ye, WANG Youkang, et al. Gravity and buoyancy analysis of full ocean depth autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2020, 41(4): 481-486.
[12] 曲明伟. 水下机器人被动浮力补偿方法与技术研究[D]. 沈阳: 东北大学, 2018.
[13] 陆洋, 唐元贵, 王健, 等. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80.
LU Yang, TANG Yuangui, WANG Jian, et al. A calculation method of ARV buoyancy trim at full-ocean depth[J]. Robot, 2021, 43(1): 74-80.
[14] 刘开周, 赵洋. 水下机器人建模与仿真技术[M]. 北京: 科学出版社, 2020.
[15] 刘兴堂, 梁炳成, 刘力. 复杂系统建模理论、方法与技术 [M]. 北京: 科学出版社, 2008.