随着北极海冰消融,北极的战略地位日益凸显,而两栖机器人在极地极端环境中具有广阔的应用前景。本文提出一种波动鳍极地两栖机器人概念样机,并建立波动鳍结构及运动学模型。针对近冰底观测任务,将波动鳍分为水平摆动和垂直摆动2种运动模式,通过数值仿真方法探究了波动鳍在近壁区不同运动模式下受力、压强以及涡量场的变化规律。结果表明,水平摆动的波动鳍离壁面越近,升力越大,且存在临界幅值,幅值高于临界值时,推力随之减小;幅值低于临界值时,推力随之增加。垂直摆动的波动鳍离壁面越近,推力越小,负升力越大。波动鳍推力和升力的变化原因是鳍面与壁面之间空间的变化,改变了流体流动结构,从而改变了波动鳍周围的压力场和涡量场。
With the melting of Arctic sea ice, the Arctic’s strategic significance is gaining prominence. Amphibious robots have considerable potential for applications in extreme polar environments. This paper proposes a concept prototype of a polar amphibious robot with undulating fins and establishes the structure and kinematic model of the fin. To observe the bottom of sea ice, this paper categorizes the undulating fins' motion modes into horizontal and vertical swings, and investigates changes to force, pressure, and vorticity fields in the near-wall region under different motion modes using numerical methods. The results show that the closer the horizontal swing fin is to the wall, the lift force increases, and there is a critical amplitude. When the amplitude is higher than the critical value, the thrust force decreases. When the amplitude is lower than the critical value, the thrust force increases. The closer the vertical swing fin is to the wall, the thrust force decreases and the lift force increases. The reason for the change in thrust and lift of the undulating fins is the change in the space between the fin surface and the wall, which changes the fluid flow structure and thus the pressure and vorticity fields around the undulating fin.
2024,46(20): 94-99 收稿日期:2023-12-24
DOI:10.3404/j.issn.1672-7649.2024.20.017
分类号:U661.3
基金项目:工业和信息化部高技术船舶科研项目(CBG2N21-2-1)
作者简介:黄鑫迪(1999-),男,硕士研究生,研究方向为水下智能无人装备
参考文献:
[1] LIU Z, RISI C, CODRON F, et al. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern[J]. Nature Communications, 2021, 12(1): 1519.
[2] XIA M, WANG H, YIN Q, et al. Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot[J]. Journal of Bionic Engineering, 2023, 20(3): 934-952.
[3] 李亚鑫, 杜亮, 王宇, 等. 波动鳍水陆两栖机器人的设计与运动性能评估[J]. 机械设计与研究, 2023, 39(3): 58-64.
LI Yaxin, DU Liang, WANG Yu, et al. Design and motion performance evaluation of an undulating fins propelled amphibious robot[J]. Mechanical Design and Research, 2023, 39(3): 58-64.
[4] YIN S L, HU Q, ZENG Y B, et al. Kinetic analysis and design of a bio-inspired amphibious robot with two undulatory fin [C]// 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). Xining, China, 2021: 1368–1373.
[5] Plaint energy systems Robotics [EB/OL]. 2023.
[6] PARK S G, KIM B, SUNG H J. Hydrodynamics of a self-propelled flexible fin near the ground[J]. Physics of Fluids, 2017, 29(5): 051902.
[7] JEONG Y D, LEE J H. Passive locomotion of freely movable flexible fins near the ground[J]. Journal of Fluids and Structures, 2018, 82: 1-15.
[8] MA H, REN S, WANG J, et al. Research on the influence of ground effect on the performance of robotic fish propelled by oscillating paired pectoral fins[J]. Industrial Robot, 2020, 48(1): 133-141.
[9] SIERRA D M, GUO J H. Two-dimensional dynamic ground effect on a swimming undulating plate: a parametric study[J]. Journal of Mechanics, 2018, 34(6): 863-877.
[10] ZHANG C Y, HUANG H B, LU X Y. Free locomotion of a flexible plate near the ground[J]. Physics of Fluids, 2017, 29(4): 041903.
[11] REN K, YU J C. Amplitude of undulating fin in the vicinity of a wall: influence of unsteady wall effect on marine propulsion[J]. Ocean Engineering, 2022, 249: 110987.
[12] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence [M]. Academic Press, London, 1972
[13] 王崇磊, 刘洋, 韩阳. 仿生柔性鳍波动推进水动力性能试验[J]. 实验室研究与探索, 2022, 41(2): 22-25
WANG Chonglei, LIU Yang, HAN Yang. An experimental study of hydrodynamic performsance of bionic flexible fin undulating propulsion[J]. Research and Exploration in Laboratory, 2022, 41(2): 22-25.