随着船舶航行对燃气轮机动力要求的提高,传统的试验-设计反复迭代方式无法高效支撑设计需求,数字孪生技术实现虚拟实体与物理对象的精准映射,支撑传统设计体系向数字化设计转变。本文论述燃气轮机在设计阶段面临的挑战,归纳多保真且具有时效性的数字孪生体构建技术,总结高维模型的降阶方法。为形成闭环的全生命周期管理,给出设计阶段数字孪生体的衍生策略,指出动态自适应所需的关键技术,在此基础上,对数字孪生技术在燃气轮机设计领域的研究前景进行展望。
The traditional trial-design iterative method cannot efficiently support the design requirements of marine gas turbine, as the power requirements of ship navigation continue to improve. Digital twin technology aims to achieve the accurate mapping between virtual digital twin model and physical space gas turbine, which has the ability to supports the transformation of design system of gas turbine from traditional trial-design to digital design. In this study, the challenges existing in the design stage of gas turbine are discussed. The construction technologies of digital twin which contains a series of multi-fidelity and time-sensitive models are analyzed. The reduction methods for introducing high-dimensional models in digital twin are summarized. In order to form the closed-loop life cycle management of the marine gas turbine, the derivative strategy of the digital twin in the design stage is discussed. The key technology of dynamic performance adaptation is pointed out. On this basis, the research prospect of digital twin technology for the design of the gas turbine is prospected.
2024,46(20): 104-108 收稿日期:2023-12-15
DOI:10.3404/j.issn.1672-7649.2024.20.019
分类号:U664.131
基金项目:国家科技重大专项资助项目(J2019-I-0004-0005);中央高校基本科研业务费专项资金(3072022QBZ0308)
作者简介:张靖凯(1999-),男,博士,研究方向为燃气轮机总体设计、燃气轮机运行与维护
参考文献:
[1] 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制, 2018, 26(10): 286-290+303.
WANG Ling. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement and Control, 2018, 26(10): 286-290+303.
[2] PIASCIK R, VICKERS J, LOWRY D, et al. Materials, structures, mechanical systems, and manufacturing roadmap[R]. NASA-2010-146982.
[3] TUEGEL E J, INGRAFFEA A R, EASON T G. Spottswood. Reengineering aircraft structural life prediction using a digital twin [J]. International Journal of Aerospace Engineering, 2011:1–14.
[4] AIDAN F, ZHONG F, CHARLES D. Digital twin: enabling technologies, challenges and open research[C]//IEEE Access. Beijing: IEEE Press, 2020, 8: 108952–108971.
[5] EMERSON. Digital twin solutions [EB/OL]. [2021-02-16] https://www. emerson.com/en-us/automation/operations-business-management/dynamic-simulation/digital-twin-solutions.2021.
[6] CHENG J, ZHANG H, TAO F, et al. DT-II: Digital twin enhanced industrial internet reference framework towards smart manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 62: 1489-1496.
[7] TAO F, CHENG J, QI Q, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 9-12.
[8] TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57: 3935-3953.
[9] 孙明霞, 桓明姣, 刘超, 等. 基于内容统计分析的数字孪生定义研究[J]. 航空发动机, 2022, 48(5): 45-57.
SUN Mingxia, HUAN Mingjiao, LIU Chao, et al. The investigation of digital twin definition based on text statistical analysis[J]. Aeroengine, 2022, 48(5): 45-57.
[10] 李澳, 徐言民, 关宏旭, 等. 基于数字孪生的测试场景架构及应用研究[J]. 舰船科学技术, 2023, 45(24): 171-175.
LI Ao, XU Yanming, GUAN Hongxu, et al. Digital twin-based test scenario architecture and application research[J]. Ship Science and Technology, 2023, 45(24): 171-175.
[11] 吴文豪, 陈国兵, 杨自春. 数字孪生技术在船舶装备运维中的应用及挑战[J]. 舰船科学技术, 2022, 44(8): 139-144.
WU Wenhao, CHEN Guobing, YANG Zichun. The application and challenge of digital twin technology in ship equipment[J]. Ship Science and Technology, 2022, 44(8): 139-144.
[12] DENTON J D, DAWES W N. Computational fluid dynamics for turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, 1998, 213: 7-10.
[13] CATER A D. The low speed performance of related aerofoils in cascades[R]. ARC-CP-29, 1956.
[14] LIEBLEIN S. Incidence and deviation angle correlations for compressor cascades[J]. Journal of basic engineering, 1960, 82(9): 575-584.
[15] 昌皓, 金东海, 桂幸民. 掠叶片进口流动的流线曲率通流模型[J]. 航空学报, 2018, 39(3): 60-70.
CHANG Hao, JIN Dongmei, GUI Xingmin. An inlet flow model of swept blades for streamline curvature through-flow methods[J]. Acta Aeronautica, 2018, 39(3): 60-70.
[16] 华鑫, 乔渭阳, 卢蕊, 等. 基于流线曲率法的航空轴流涡轮损失模型研究[J]. 机械设计与制造, 2005(12): 12–14.
HUA Xin, QIAO Weiyang, LU Rui, et al. A study on different loss models in axial – flow turbines based on the method of streamline -curvature[J]. Mechanical Design and Manufacturing, 2005(12): 12–14.
[17] 孙志杰. 航空发动机燃烧室设计与优化方法研究[D]. 南京: 南京航空航天大学, 2021.