排气烟囱位于燃气轮机排气系统末端,对排气管路排出的烟气流向起到一定的引流作用。不同排气烟囱出口角度对排气系统的流动阻力、排气区域流场、温度场分布以及烟气弥漫与倒吸均会产生影响作用。因此,开展排气烟囱出口角度研究对改善排气系统流动特性具有重要的意义。本文以某型船舶为研究对象,建立燃气轮机进排气系统流动特性数值模型,开展了不同排气烟囱角度下排气流动特性随外界风速、风向变化趋势的研究。在此基础上,进一步探究不同风速、风向条件下,烟囱出口角度对排气区域流场、壁面温度分布以及烟气扩散与倒吸的影响,从多角度对比分析了烟囱出口角度对排气系统流动特性的综合影响。研究结果表明,在一定约束条件下,当排气烟囱出口角为45°时,其排气流动性能与烟囱围壁平均温度等综合性能最好。同时,在船舶尾部近甲板处未发生烟气明显扩散,在进气系统吸气入口未发生烟气倒吸。本文研究工作为特征环境条件下燃气轮机排气烟囱结构设计提供了思路,具有较好的工程指导意义。
The exhaust chimney is located at the end of the gas turbine exhaust system and plays a certain role in the drainage of the gas flow from the exhaust pipe. The flow resistance of exhaust system, temperature field distribution in exhaust area and gas diffusion are affected by different exhaust chimney outlet angles. Therefore, it is of great significance to study the outlet angle of exhaust chimney to improve the flow characteristics of exhaust system. Taking a certain type of ship as the research object, this paper establishes a numerical model of the flow characteristics of the gas turbine inlet and exhaust system, carries out the trend of the change of the exhaust flow characteristics with the external wind speed and direction under different exhaust chimney angles, and further explores the influence of the chimney outlet Angle on the wall temperature distribution and exhaust diffusion under different wind speed and direction conditions. The influence of the chimney outlet Angle on the flow field and temperature field in the exhaust area is analyzed from multiple angles. The results show that under certain constraint conditions, the exhaust flow performance and the average temperature of the chimney wall are the best when the outlet Angle of the exhaust chimney is 45°. Moreover, there was no obvious diffusion of smoke near the deck, and no smoke suction at the inlet of the intake system. The research work in this paper provides ideas for the design of exhaust chimney structure under the requirement of waterproof gun, and has practical application value.
2024,46(20): 115-123 收稿日期:2024-1-2
DOI:10.3404/j.issn.1672-7649.2024.20.021
分类号:TK428
作者简介:熊昵(1999-),女,硕士研究生,研究方向为流体仿真与结构优化
参考文献:
[1] 侯戈. 舰船烟囱漫谈[J]. 舰载武器, 2010(4): 82-86.
[2] 郭孟秋, 甘家毅, 杨齐勇, 等. 浅谈防水炮烟囱及其附件的设计[J]. 广东造船, 2019, 38(2): 71-73.
[3] 李强. 船舶进排气系统数值模拟及阻力模拟装置研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[4] 余思骞, 郭幼丹, 郭雷, 等. 基于CFD的船舶排气管系流场分析[J]. 船海工程, 2015, 44(2): 67-70.
[5] 赵宇晶悦. 船舶进排气系统及通风系统设计与优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[6] 王忠义, 张泽宇, 符昊, 等. 燃气轮机排气蜗壳流动损失的优化(英文)[J]. Journal of Marine Science and Application, 2022, 21(3): 236-244.
[7] 张佳佳, 付云鹏, 叶正华, 等. 舰船动力系统排烟对甲板上方空间温度场影响的数值分析[J]. 中国舰船研究, 2018, 13(5): 85–90.
[8] 郭晟江, 蒋曙晖. 烟囱顶与上建高度差对烟气流场分布的影响[J]. 船舶设计通讯, 2021(1): 77-82.
[9] 蒋武杰, 张维毅, 徐昌, 等. 船舶高温烟气扩散数值模拟方法[J]. 船舶工程, 2021, 43(4): 77-81+127.
[10] 崔濛, 刘昕, 龚家烨. 不同海况下风浪对船舶排气扩散的影响研究[J]. 中国造船, 2023, 64(1): 257-267.
[11] 石磊. 基于Richardson外推法的CFD网格误差研究[D]. 北京: 华北电力大学(北京), 2011.
[12] 陶琛. 基于流场仿真的舰船测风位置优化及误差修正研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.