海洋内波作为密度稳定层化海水内部的一种波动,在海水的水平和垂直交换过程中引起温、盐等海水内部结构的剧烈变化,同时也会对于水下的声速梯度结构产生较大影响。基于某海域中捕获的内波现象,从不同声源探测深度、接收深度、频率及相位变化等方面对其在负梯度环境下的声传播特性展开研究。结果表明,内波的存在可以增大传播损失,减小声呐的探测距离,而且随着声源深度的增加,传播损失先减小后增大,当声源处于内波最大振幅一半处时,声传播损失最小。对于不同接收深度处的传播损失也有着类似的结论,且传播损失较大时,其相应的相位变化最小,反之亦然。
As a kind of fluctuation in the density stable stratified seawater, the internal wave of the ocean causes drastic changes in the internal structure of seawater such as temperature and salt during the horizontal and vertical exchange of seawater, and has a great impact on the underwater sound velocity gradient structure. Based on the internal wave phenomenon captured in a certain sea area, the acoustic propagation characteristics of different sound sources in a negative gradient environment are studied from the aspects of detection depth, reception depth, frequency, and phase variation. The results show that the existence of internal waves can increase the propagation loss and reduce the detection distance of sonar, and with the increase of the depth of the sound source, the propagation loss decreases first and then increases, and the sound propagation loss is the smallest when the sound source is at half of the maximum amplitude of the internal wave. A similar conclusion is reached for the propagation loss at different reception depths, and the corresponding phase change is the smallest when the propagation loss is large, and vice versa.
2024,46(20): 137-141 收稿日期:2023-12-11
DOI:10.3404/j.issn.1672-7649.2024.20.025
分类号:O427.1
作者简介:张世崧(1987-),男,硕士,研究方向为海洋声学
参考文献:
[1] 苏晓星, 李风华, 简水生. 浅海低频声场的水平纵向相关性[J]. 声学技术, 2007, 26(4): 579–583.
SU Xiaoxing, LI Fenghua, JIAN Shuishui. Horizontal and vertical correlation of low-frequency sound fields in shallow waters[J]. Acoustic Technology, 2007, 26 (4): 579–583.
[2] 胡涛, 宋文华. 海洋内波对水下声场的影响[J]. 物理, 2014, 43(10): 667–672
HU Tao, SONG Wenhua. The influence of ocean internal waves on underwater sound field[J]. Physics, 2014, 43(10): 667–672
[3] 周江涛, 王颖, 安玉柱. 南海孤立子内波影响下的声场结构研究[J]. 声学技术, 2015, 34(2): 75–77.
ZHOU Jiangtao, WANG Ying, AN Yuzhu. Research on sound field structure under the influence of internal waves in solitons in the South China Sea[J]. Acoustic Technology, 2015, 34 (2): 75–77.
[4] 刑传玺, 宋扬, 刘文博, 等. 孤立子内波存在下的声传播仿真研究[J]. 云南民族大学学报(自然科学版), 2019, 28(4): 258–365.
XING Chuanxi, SONG Yang, LIU Wenbo, et al. Simulation study of sound propagation in the presence of soliton internal waves[J]. Journal of Yunnan University for Nationalities (Natural Science Edition), 2019, 28 (4): 258–365.
[5] 侯倩男, 吴金荣, 马力, 等. 负梯度声速剖面的浅海混响平均强度的垂直结构[J]. 声学学报, 2019, 44(6): 1036–1044.
HOU Qiannan, WU Jinrong, MA Li, et al. Vertical structure of average intensity of shallow sea reverberation in negative gradient sound velocity profiles[J]. Journal of Acoustics, 2019, 44 (6): 1036–1044.
[6] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建[J]. 物理学报, 2023, 72(7): 241–251.
LI Yongfei, GUO Ruiming, ZHAO Hangfang. Sparse reconstruction of interference fringes in shallow sea internal wave environments[J]. Chinese Journal of Physics, 2023, 72 (7): 241–251.
[7] 朱军, 祝捍皓, 肖瑞, 等. 孤立子内波对低频声信号传播特性的影响研究[J]. 声学技术2019, 38(5): 87–88.
ZHU Jun, ZHU Hanhao, XIAO Rui, et al. Research on the influence of soliton internal waves on the propagation characteristics of low frequency sound signals[J]. Acoustic Technology 2019, 38 (5): 87–88.
[8] 张林, 范培勤, 徐国军. 浅海负跃层对声传播影响的仿真研究[J]. 声学技术, 2013, 32(6): 69–70.
ZHANG Lin, FAN Peiqin, XU Guojun. Simulation study on the influence of shallow sea negative thermocline on sound propagation[J]. Acoustic Technology, 2013, 32 (6): 69–70.
[9] 庞立臣, 胡涛, 鹿力成, 等. 负梯度水文环境下海山对声传播的影响[J]. 声学学报, 2020, 45(1): 45–54.
PANG Lichen, HU Tao, LU Licheng, et al. The impact of seamounts on sound propagation in a negative gradient hydrological environment[J]. Journal of Acoustics, 2020, 45 (1): 45–54.
[10] 张成伟. 海洋孤立子内波及其对声传播影响的数值研究[D]. 大连: 大连理工大学, 2022.
[11] 姜煜, 张敏, 白兴宇, 等. 基于声矢量场处理的海洋内波预警监测技术[J]. 电子科技, 2022, 35(3): 25–31.
JIANG Yu, ZHANG Min, BAI Xingyu, et al. Marine internal wave warning and monitoring technology based on acoustic vector field processing[J]. Electronic Science and Technology, 2022, 35 (3): 25–31.
[12] 杨坤德, 雷波, 卢艳阳. 海洋声学典型声场模型的原理及应用[M]. 西安:西北工业大学出版社,2018.