为了保证舱内居住的舒适度设计基于人工智能技术的船舶居住舱暖通控制系统。传感器采集居住舱环境数据,对数据进行预处理,通过LSTM模型预测舱内环境变化趋势,根据预测结果调节暖通系统的风速、供热及供冷量等运行参数,实现居住舱暖通系统的合理调节控制。结果显示,该系统可有效预测出居住舱环境变化趋势,并依据预测结果合理控制居住舱暖通系统,令舱内温湿度及空气质量达到舒适稳定状态,保障舱内环境的舒适性。
Ensure the comfort of living inside the cabin. To this end, design a ship's residential cabin HVAC control system based on artificial intelligence technology. Sensors collect data on the living cabin environment, preprocess the data, predict the trend of changes in the cabin environment through LSTM model, and adjust the operating parameters of the HVAC system such as wind speed, heating and cooling capacity based on the prediction results to achieve reasonable adjustment and control of the living cabin HVAC system. The results show that the system can effectively predict the trend of changes in the living cabin environment, and control the HVAC system of the living cabin reasonably based on the prediction results, so that the temperature, humidity, and air quality inside the cabin can reach a comfortable and stable state, ensuring the comfort of the cabin environment.
2024,46(20): 163-166 收稿日期:2024-3-16
DOI:10.3404/j.issn.1672-7649.2024.20.030
分类号:TP273
基金项目:湖北省教育厅规划办重点课题项目(2023GA096)
作者简介:艾丽容(1979-),女,硕士,副教授,研究方向为暖通空调技术
参考文献:
[1] 安毓辉, 陈福全. 综合科考船居住舱室IDAC空调系统设计[J]. 船海工程, 2022, 51(3): 117-121.
AN Yuhui, CHEN Fuquan. Design of IDAC system in the multidisciplinary research vessel[J]. Marine Engineering, 2022, 51(3): 117-121.
[2] 李双宇, 张明凯, 刘艳臣, 等. 基于LSTM模型的排水系统流量预测研究[J]. 中国给水排水, 2022, 38(5): 59-64.
LI Shuangyu, ZHANG Mingkai, LIU Yanchen, et al. Research on drainage flow prediction based on LSTM model[J]. Water Supply and Drainage in China, 2022, 38(5): 59-64.
[3] 陈猛, 郑一鸣, 陈非凡. 多类型温度传感器自适应智能感知节点研究[J]. 仪表技术与传感器, 2022(6): 29-34+39.
CHEN Meng, ZHENG Yiming, CHEN Feifan. Research on adaptive intelligent sensing nodes of multi-type temperature sensors[J]. Instrumentation Technology and Sensors, 2022(6): 29-34+39.
[4] 郭燕飞. 基于光电传感器的暖通空调温湿度智能控制技术[J]. 传感技术学报, 2022, 35(9): 1293-1298.
GUO Yanfei. Intelligent control technology of temperature and humidity of HVAC based on photoelectric sensor[J]. Journal of Sensing Technology, 2022, 35(9): 1293-1298.
[5] 王佳明, 杨海滨, 赵天怡, 等. 基于温度多元线性回归模型的空调制冷站在线预测控制方法研究[J]. 暖通空调, 2023, 53(2): 140-147.
WANG Jiaming, YANG Haibin, ZHAO Tianyi, et al. Research on online predictive control method of air conditioning refrigeration station based on multiple linear regression model of temperature[J]. Heating Ventilation & Air Conditioning, 2023, 53(2): 140-147.
[6] 刘伟, 李怀, 黄巍, 等. 基于TRNSYS模拟的某近零能耗办公楼暖通空调系统优化配置分析[J]. 建筑科学, 2022, 38(4): 158-168.
LIU Wei, LI Huai, HUANG Wei, et al. Optimal configuration analysis of HVAC system in a near zero energy office building based on TRNSYS simulation[J]. Building Science, 2022, 38(4): 158-168.