为了及时发现并处理高频电路中潜在的能耗问题,提出低能耗船舶用高频电路运行状态自动监测方法。在高频电路系统的关键位置部署温度、电流与电压等传感器,以实时获取船舶用高频电路的运行状态数据。采集各传感器输出的模拟信号并转换为数字信号,采用无线通信技术将数字信号传输至数据处理中心,利用双向LSTM网络构建低能耗船舶用高频电路运行状态自动监测模型,将所采集的数据作为模型输入,监测高频电路运行状态。实验结果显示,路由算法优化后信息传输所消耗的能耗下降约50%左右,监测结果整体准确率达到96%。
In order to timely detect and address potential energy consumption issues in high-frequency circuits, a method for automatic monitoring of the operating status of high-frequency circuits for low energy ships is proposed. Deploy temperature, current, and voltage sensors at critical locations in the high-frequency circuit system to obtain real-time operational status data of high-frequency circuits used in ships. Collect analog signals output by various sensors and convert them into digital signals. Use wireless communication technology to transmit the digital signals to the data processing center, and use a bidirectional LSTM network to construct an automatic monitoring model for the operation status of high-frequency circuits in low-energy ships. The collected data is used as model input to monitor the operation status of high-frequency circuits. The experimental results show that after optimizing the routing algorithm, the energy consumption of information transmission decreases by about 50%, and the overall accuracy of monitoring results reaches 96%.
2024,46(20): 167-171 收稿日期:2024-7-4
DOI:10.3404/j.issn.1672-7649.2024.20.031
分类号:U665
基金项目:国家自然科学基金资助项目(61403256)
作者简介:张宝君(1980-),女,硕士,助教,研究方向为模拟和数模混混合集成电路设计
参考文献:
[1] 孟祥剑, 李明, 方辉, 等. 多稳态结构耗能增强特性及减振性能[J]. 船舶工程, 2022, 44(8): 21-26, 34.
MENG Xiangjian, LI Ming, FANG Hui, et al. Energy dissipation enhancement and vibration reduction performance of multi-steady-state structure[J]. Ship Engineering, 2022, 44(8): 21-26, 34.
[2] AKBAR M K , AMAYRI M , BOUGUILA N . A novel non-intrusive load monitoring technique using semi-supervised deep learning framework for smart grid[J]. Building Simulation, 2024, 17(3): 441-457.
[3] 程逍, 李平, 郭凌旭, 等. 基于量测数据贝叶斯概率矩阵分解的变压器运行状态监测方法[J]. 电力系统及其自动化学报, 2022, 34(1): 100-107.
CHENG Xiao, LI Ping, GUO Lingxu, et al. Transformer operation status monitoring method based on bayesian probabilistic matrix factorization of measured data[J]. Proceedings of the CSU-EPSA, 2022, 34(1): 100-107.
[4] 张超凡, 牛峰, 孙庆国, 等. 基于漏电流多频率特征的变频电机主绝缘状态在线监测方法[J]. 电机与控制学报, 2023, 27(8): 64-72.
ZHANG Chaofan, NIU Feng, SUN Qingguo, et al. Online monitoring of ground-wall insulation condition in inverter-fed motors using multi-frequency characteristics of leakage current[J]. Electric Machines and Control, 2023, 27(8): 64-72.
[5] 魏东辉, 李昊泽. 基于多源信息融合的船舶电气设备状态识别方法[J]. 舰船科学技术, 2024, 46(10): 186-189.
WEI Donghui, LI Haoze. The state recognition method of ship electrical equipment based on multi source information fusion[J]. Ship Science and Technology, 2024, 46(10): 186-189.
[6] 翟小飞, 李鑫航, 刘金利, 等. 谐振频率法测量高频变压器短路电感参数[J]. 海军工程大学学报, 2022, 34(3): 13-19.
ZHAI Xiaofei, LI Xinhang, LIU Jinli, et al. Measuring short circuit inductance of high-frequency transformer with resonant frequency method[J]. Journal of Naval University of Engineering, 2022, 34(3): 13-19.
[7] 李纯, 尹泽跃, 蒙毅, 等. 基于等效电路模型的铜精炼槽阴极电流仿真[J]. 计算机仿真, 2023, 40(7): 267-272.
LI Chun, YIN Zeyue, MENG Yi, et al. Cathode current simulation of copper electrolytic cell based on equivalent circuit model[J]. Computer Simulation, 2023, 40(7): 267-272.
[8] 曲文韬, 赵航, 刘洪顺, 等. 换流变压器局部放电高频在线监测抗干扰技术研究[J]. 变压器, 2022, 59(7): 43-50.
QU Wentao, ZHAO Hang, LIU Hongshun, et al. Anti-interference technology research on high frequency on-line monitoring partial discharge of converter transformer[J]. Transformer, 2022, 59(7): 43-50.