为研究某型水下武器发射装置中的改性双基推进剂的力学性能,通过调整固体添加物粒径,对比分析不同粒度Al粉和不同粒度SiC/Al2O3的改性双基推进剂力学性能。结果表明,在Al/SiC推进剂中,推进剂的常温抗拉强度和常温最大伸长率随着Al粉粒径的增大呈现先降低后增大的趋势;在不同Al粉粒径下,推进剂的力学性能随SiC粒度变化趋势不同。Al粉粒径为20 μm,SiC粒度为W2.5时,低温和常温抗拉强度最大,分别为37.5 MPa和6.58 MPa;Al粉粒径为140 μm,SiC粒度为W1.5时,高温抗拉强度最大,为2.22 MPa;加入Al2O3替代SiC后,低温抗拉强度最大为38.3 MPa,比SiC作为弹道稳定剂的推进剂高2.1%,常温抗拉强度最大值高7.1%,高温抗拉强度最大值高4.3%。可见通过调整固体添加物Al粉和SiC/Al2O3粒径,可实现对改性双基推进剂的力学性能进行局部调控,为水下发射装置的推进剂配方设计提供有效手段。
In order to study the mechanical properties of modified double base propellants in a underwater launch device, the mechanical properties of modified double base propellants with different particle sizes of Al powder and SiC/Al2O3 were compared and analyzed by adjusting the particle size of solid additives.The results show that in Al/SiC propellants, the tensile strength and maximμm elongation at room temperature of the propellant show a trend of first decreasing and then increasing with the increase of Al powder particle size; The mechanical properties of the propellant exhibit different trends with the variation of SiC particle size under different Al powder particle sizes. When the particle size of Al powder is 20 μm and the particle size of SiC is W2.5, the tensile strength at low temperature and room temperature is the highest, with 37.5 MPa and 6.58 MPa, respectively; When the particle size of Al powder is 140 μm and the particle size of SiC is W1.5, the highest high-temperature tensile strength is 2.22 MPa; After adding Al2O3 instead of SiC, the maximμm low-temperature tensile strength is 38.3 MPa, which is 2.1% higher than the propellant using SiC as a ballistic stabilizer. The maximμm low-temperature tensile strength is 7.1% higher, and the maximμm high-temperature tensile strength is 4.3% higher. It is concluded that by adjusting the solid additives Al powder and SiC/ Al2O3 particle size, local regulation of the mechanical properties of modified double base propellants can be achieved, providing effective means for the propellant formulation design of underwater launch devices.
2024,46(20): 172-176 收稿日期:2024-1-6
DOI:10.3404/j.issn.1672-7649.2024.20.032
分类号:TJ55
基金项目:装备发展部领域基金重点项目(61402070104)
作者简介:熊文慧(1992-),男,硕士,工程师,研究方向为水下发射装置
参考文献:
[1] 宋丹平, 翟鹏程, 郑剑, 等. 一种固体推进剂本构关系的研究[J]. 固体力学学报, 2008, 29(1): 6-8.
[2] 李高春, 李树谦, 郭宇, 等. 不同温度和拉伸速率下复合推进剂力学性能及破坏模式分析[J]. 固体火箭技术, 2019, 42(3): 297-302.
[3] 张恒宁, 樊学忠, 王晗. 高能钝感推进剂配方改性的研究进展[J]. 科学技术与工程, 2018, 18(24): 195-199.
[4] ELENA Sebastiao, CYRIL Cook, ANGUANG Hu, et al. Recent developments in the field of energetic ionic liquids[J]. Journal of Materials Chemistry A, 2014, 2(22): 8153-8173.
[5] 曹磊, 任黎, 齐晓飞, 等. HMX粒度对PNIMMO基推进剂力学性能的影响[J]. 科学技术与工程, 2015, 15(20): 256-259 .
[6] 张炜, 鲍桐, 周星. 火箭推进剂[M]. 北京: 国防工业出版社, 2014: 128-142.
[7] 魏晓林, 周建辉, 赵国祯, 等. 纤维素甘油醚硝酸酯在改性双基推进剂中的应用研究[J]. 化工新型材料, 2020, 48(6): 232-235.
[8] 吴艳光, 罗运军, 葛震. GAP型交联改性双基推进剂黏合剂的力学性能[J]. 火炸药学报, 2012, 35(2): 66-69.
[9] 朱林, 欧江阳, 杨晓瑜, 等. 复合球形药对改性双基推进剂力学性能和燃烧性能的影响[J]. 含能材料, 2012, 20(5): 592-595.
[10] 张涛. Al 粉对推进剂力学性能的影响[J] 化学推进剂与高分子材料, 2023, 21(5): 54-57.