通过各工况下的力学特性试验能够详细地考核全尺寸样机结构可靠性。然而,该方法通常受到试验环境、周期等多种因素的制约。因此,依据全尺寸样机关键性能指标,建立具有结构力学相似关系的缩比模型来代替全尺寸样机,进而开展相关工艺及力学性能验证则更具有普适性和可操作性。本文针对复合材料发射筒全尺寸样机在使用工况下的抗拉和承压能力要求,进行详细的结构力学分析,并提出基于全尺寸样机筒体及其连接结构在各工况下的平均应力与缩比模型相应部位的平均应力相等时的力学模型得到缩比模型在相应工况下的外载荷条件的方法;在此基础上,利用有限元法计算缩比模型在相关工况下的应力大小及分布。最终,依据缩比模型的有限元计算结果对复合材料发射筒正式样机的强度余量进行预测,从而为缩比模型的进一步力学性能测试以及发射筒正式样机的设计提供理论指导。
The structural reliability of the full-scale prototype can be evaluated in detail through mechanical property tests under various working conditions. However, this method is often constrained by various factors such as test environment and test cost. Therefore, based on the performance requirements of the full-scale prototype, establishing a scaled model with structural mechanical similarity to replace the full-scale prototype for relevant processing and mechanical performance verification is currently a universal and operable method. This article conducts a detailed structural mechanical analysis based on the tensile and pressure bearing performance requirements of a full-scale prototype of a composite canister launcher. And it is proposed to obtain the load conditions of the scaled model based on the average stress of the full-scale prototype and its connecting structure under different working conditions being equal to the average stress of the corresponding parts of the scaled model. Furthermore, the stress and its distribution of the scaled model under relevant working conditions are calculated using the finite element method. Based on the result, the safety margin of the full-scale prototype of the composite canister launcher is predicted, which provides theoretical guidance for further mechanical testing of the scaled model and the design of the formal prototype of the canister launcher.
2024,46(20): 177-183 收稿日期:2023-12-11
DOI:10.3404/j.issn.1672-7649.2024.20.033
分类号:TJ768
作者简介:李红(1990-),女,博士,工程师,研究方向为水面发射装置结构设计
参考文献:
[1] ZHANG Q , YE H, WANG Z. A comparative study of launch canister thermal control systems using a liquid or gas working medium[J]. Applied Thermal Engineering, 2018, 131: 125–131.
[2] CHOI W, JUNG S. launch performance degradation of the rupture-type missile canister[J]. Applied Sciences, 2019, 9(7): 4-11.
[3] 黄通, 郭保全, 栾成龙, 等. 薄壁内衬复合材料发射筒结构设计与缠绕工艺研究[J]. 玻璃钢/复合材料, 2019(5): 12–17.
[4] 孙同生, 王琪, 于存贵. 玻-碳混杂纤维缠绕复合材料发射筒发射动力学研究[J]. 振动与冲击, 2019, 38(24): 74–80.
[5] 刘东, 王向往, 郭敬彬, 等. 复合材料发射筒内压工况下强度刚度仿真[J]. 舰船科学技术, 2020, 42(9): 111–115.
LIU Dong, WANG Xiangwang, GUO Jingbin, et al. Simulation research on strength and stiffness of a composite material launch tube under internal pressure[J]. Ship Science and Technology, 2020, 42(9): 111–115.
[6] 李洪涛. 某型增强型复合材料发射筒强度特性评估[J]. 海军航空大学学报, 2022, 37(2): 217-222.
[7] 徐光磊, 杨庆平, 阮文俊, 等. 考虑混杂效应时纤维混杂缠绕筒三维等效弹性模量的理论估算和试验研究[J]. 复合材料学报, 2012, 29(4): 204-209.
[8] 樊晓斌, 吴医博. 复合材料筒体结构水压试验失效分析[J]. 材料开发与应用, 2016, 31(6): 13-16.
[9] 徐光磊, 阮文俊, 王浩, 等. 含内衬纤维缠绕筒强度分析及水压实验[J]. 功能材料, 2012, 20(43): 2772-2776.
[10] 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-19.