通过实验、数值方法对船舶加筋板和点阵夹层板的三点弯曲性能开展研究。首先,通过3D打印制备加筋板和点阵夹层板的试件,并在力学试验机上开展三点弯曲试验。实验结果表明,点阵夹层板相比于加筋板具有更好的力学性能,在质量相同的情况下,点阵夹层板的强度相比于加筋板提高了42.86%,刚度提高了63.79%;接着利用LS-DYNA有限元软件建立加筋板和夹层结构的三点弯曲有限元模型,对三点弯曲实验过程进行模拟,结果表明数值模拟与实验结果具有良好的一致性,数值方法可以用于船舶点阵夹层板设计。
The three-point bending properties of ship stiffened plate and lattice sandwich plate are studied by experimental and numerical methods. Firstly, by 3D printing the specimens of ship stiffened plate and the lattice sandwich panel and carrying out the three-point bending test on the mechanical test machine, the experimental results show that the lattice sandwich panel has better mechanical properties than ship stiffened plate. Under the condition of the same mass, the strength of the lattice sandwich panel is increased by 42.86% and the stiffness is increased by 63.79%. Then LS-DYNA finite element software is used to establish the three-point bending finite element model of the stiffened plate and sandwich structure, and the experimental process of the three-point bending is simulated. The results show that the numerical simulation has a good agreement with the experimental results, and the numerical method can be used in the design of the ship lattice sandwich plate.
2024,46(21): 1-6 收稿日期:2024-5-10
DOI:10.3404/j.issn.1672-7649.2024.21.001
分类号:U663
作者简介:张义忠(1967-),男,研究员,研究方向为舰船总体
参考文献:
[1] 陈彦廷, 于昌利, 桂洪斌. 船体板和加筋板的屈曲及极限强度研究综述[J]. 中国舰船研究, 2017, 12(1): 54-62.
CHEN Y T, YU C L, GUI H B. Research development of buckling and ultimate strength of hull plate and stiffened panel[J]. Chinese Journal of Ship Research, 2017, 12(1): 54-62.
[2] 王栋, 李正浩. 薄板结构加筋布局优化设计方法研究[J]. 计算力学学报, 2018, 35(2): 138-43.
WANG Dong, LI Zhenghao. Layoutoptimization method forstiffeners of plate structure[J]. Chinaese Journal of Computational Mechanics, 2018, 35(2): 138-43.
[3] ALLEN H G. Analysis and design of structural sandwich panels: the commonwealth and international library: structures and solid body mechanics division [M]. Elsevier, 2013.
[4] CARLSSON L A, KARDOMATEAS G A. Structural and failure mechanics of sandwich composites [M]. Springer Science & Business Media, 2011.
[5] STYLES M, COMPSTON P, KALYANASUNDARAM S. The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures[J]. Composite Structures, 2007, 80(4): 532-8.
[6] UM H-J, LEE J-S, SHIN J-H, et al. 3D printed continuous carbon fiber reinforced thermoplastic composite sandwich structure with corrugated core for high stiffness/load capability[J]. Composite Structures, 2022, 291: 115590.
[7] KUMAR M, Kar V, CHANDRAVANSHI M. Free vibration analysis of sandwich composite plate with honeycomb core[J]. Materials Today: Proceedings, 2022, 56: 931-5.
[8] WICKS N, Hutchinson J W. Performance of sandwich plates with truss cores[J]. Mechanics of Materials, 2004, 36(8): 739-51.
[9] BAROUTAJI A, ARJUNAN A, NIKNEJAD A, et al. Application of cellular material in crashworthiness applications: an overview [J]. 2019.
[10] YU X, ZHOU J, LIANG H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science, 2018, 94: 114-73.
[11] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747-69.
[12] 徐香新. 理想八面体点阵结构力学模型优化及力学性能测试分析[J]. 力学季刊, 2021, 42(4): 696-706.
[13] Standard test method core shear properties of sandwich constructions by beam flexure: ASTM C3-93 [S]. West Conshohocken, PA: ASTM International, 2006: 1-8.
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456-2005[S]. 北京: 中国标准出版社, 2005.
[15] AIROLDI A, NOVAK N, SGOBBA F, et al. Foam-filled energy absorbers with auxetic behaviour for localized impacts [J]. Materials Science and Engineering: A, 2020, 788.