基于有限元模态计算、计算流体力学(CFD)方法、结构动力学理论以及嵌套网格技术,同时考虑涡激振动抑制装置来流向和横流向振动,建立涡激振动抑制装置的流固耦合动力学仿真模型,预测螺旋列板涡激振动抑制装置对海洋立管涡激振动的抑制效果。通过与国外文献实验数据对比,验证本文数值方法的准确性。采用本文的螺旋列板结构参数进行仿真计算,螺旋列板横向振幅抑制效率达到98%以上,拖拽力系数小于1.6,可以满足工程需求。
Based on finite element modal calculation, computational fluid dynamics (CFD) methods, structural dynamics theory, and nested grid technology, a fluid structure coupling dynamic simulation model of the vortex induced vibration suppression device was established, taking into account the flow direction and transverse vibration of the vortex induced vibration suppression device. The suppression effect of the spiral plate vortex induced vibration suppression device on the vortex induced vibration of marine risers was predicted. The accuracy of the numerical method proposed in this paper was verified by comparing it with experimental data from foreign literature. Using the structural parameters of the spiral plate in this article for simulation calculation, the lateral amplitude suppression efficiency of the spiral plate reaches over 98%, and the drag force coefficient is less than 1.6, which can meet engineering requirements.
2024,46(21): 7-12 收稿日期:2024-1-8
DOI:10.3404/j.issn.1672-7649.2024.21.002
分类号:O353.1
基金项目:中海石油有限公司科研资助项目(CCL2022RCPS0490RQY)
作者简介:杨加栋(1977-),男,硕士,高级工程师,研究方向为海洋工程
参考文献:
[1] 赵婧. 海洋立管涡致耦合振动CFD数值模拟研究[D]. 青岛:中国海洋大学, 2012.
[2] XU W H, ZENG X H, WU Y X. High aspect ratio (L/D) riser VIV prediction using wake oscillator model[J]. Ocean Engineering, 2008, 35(17–18): 1769-1774.
[3] ZHANG W, LI X, YE Z, et al. Mechanism of frequency lock-in in vortex-induced vibrations at low Reynoldsnumbers[J]. Journal of Fluid Mechanics, 2015, 783: 72-102.
[4] GAO Y, ZOU L, ZONG Z, et al. Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model[J]. Ocean Engineering, 2019, 171(1): 157-171.
[5] ASSI G, BEARMAN P W, KITNEY N, et al. Suppression of wake-induced vibration of tandem cylinders with free-to-rotate control plates[J]. Journal of Fluids and Structures, 2010, 26(7–8): 1045–1057.
[6] ZHOU T, RAZALI S, HAO Z, et al. On the study of vortex-induced vibration of a cylinder with helical strakes[J]. Journal of Fluids and Structures, 2011, 27(7): 903–917.
[7] SANAATI B, KATO N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow[J]. Journal of Marine Science&Technology, 2013.
[8] CHEN D, ABBAS L K, WANG G, et al. Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs)[J]. Nonlinear Dynamics, 2018, 94: 1-33.
[9] QUEN L K, ABU A, KATO N, et al. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser[J]. Applied Ocean Research, 2014, 44(3): 82-91.
[10] HUERA-HUARTE F J, BEARMAN P W. Wake structures and vortex-induced vibrations of a long flexible cylinder — Part 1: Dynamic response[J]. Journal of Fluids & Structures, 2009, 25(6): 969-990.
[11] SHAN H. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves[J]. Journal of Fluids & Structures, 2011, 27(7): 1124-1133.