克令吊是海洋工程结构物中普遍使用的重要设备,随着海洋工程的发展,克令吊与船体之间过渡结构越来越多采用圆转方结构。根据工程经验,吊机筒体设计时由于未考虑下方圆转方过渡结构的几何信息无法准确模拟圆转方结构对于吊机筒体的影响,导致克令吊筒体在界面处产生严重的应力集中现象。针对这一问题,通过有限元方法模拟克令吊筒体与不同几何参数圆转方结构相接时的受力状态并计算得到应力集中系数,分析不同几何参数对于克令吊筒体应力集中系数的影响。结果表明,圆转方结构的面内角、面外角、高度及边长等均会影响圆筒应力集中系数,其中面外角对于应力集中系数的影响最为显著。
Crane is a kind of important equipment which is widely used in ocean engineering structure. With the development of ocean engineering, more and more transition structure between crane cylinder and hull structure are adopting the round to square structure. According to engineering experience, crane cylinder designers often fail to simulate the influence of round to square structure upon the crane cylinder structure, which may result severe stress concentration phenomenon around interface. In order to study the stress concentration of crane cylinder influenced by different geometry parameters of round to square structure, the stress state of structure with different geometry is simulated by finite element analysis to calculate the stress concentration factor. The result shows the cylinder stress concentration factor is influenced by the in-plane angle, out-of-plane angle, height and side length of round to square structure and out-of-side plane angle has the most significant influence.
2024,46(21): 19-24 收稿日期:2024-1-22
DOI:10.3404/j.issn.1672-7649.2024.21.004
分类号:U663.7
作者简介:钱笠君(1987-),男,硕士,高级工程师,研究方向为船舶结构设计
参考文献:
[1] 高浩, 陈景杰, 黄一. KK型管节点应力集中系数随参数变化的规律[J]. 船海工程, 2016, 45(3): 114-117.
GAO Hao, CHEN Jingjie, HUANG Yi. On stress concentration factor of tubular KK-joints under the influence of geometrical parameters[J]. Ship & Ocean Engineering, 2016, 45(3): 114-117.
[2] 王文华, 张淑华, 端传捷. 轴力作用下KT型管节点的应力集中系数分析[J]. 船海工程, 2016, 46(6): 164-168.
WANG Wenhua, ZHANG Shuhua, DUAN Chuanjie. Analysis of stress concentration factor for tubular KT joints under balanced axial load[J]. Ship & Ocean Engineering, 2016, 46(6): 164-168.
[3] 康忠元, 张朕滔, 邹振宇. 起重机箱型梁变截面处应力集中问题的研究[J]. 应用技术, 2017, 286(11): 94-96.
[4] 李莹, 黄侨, 唐海红. 焊接工字梁应力集中的有限元分析[J]. 哈尔滨工业大学学报, 2008, 40(12): 1999-2002.
LI Ying, HUANG Qiao, TANG Haihong. Finite element analysis on stress concentration of welded I-beam[J]. Journal of Harbin Institute of Technology, 2008, 40(12): 1999-2002.
[5] 孙雪荣, 许彬. 克令吊基座的局部加强结构优化设计研究[J]. 船舶, 2006(5): 21-26.
SUN Xuerong, XU Bin. Optimization design of local stiffened structure for crane seating[J]. Ship & Boat, 2006(5): 21-26.
[6] 张航, 王陶, 张睿光. 航空复杂产品的CATIA结构稳健建模方法研究[J]. 飞机设计, 2023, 43(3): 21-27.
[7] 王奇光, 付志伟. 基于CATIA的船舶主船体造型特征建模研究[J]. 舰船科学技术, 2021, 43(3A): 1-3.
WANG Qiguang, FU Zhiwei. Research on main hull modeling feature modeling based on CATIA[J]. Ship Science and Technology, 2021, 43(3A): 1-3.
[8] 李梦伟. 基于 CATIA 的非常规FPSO快速建模方法[J]. 船舶, 2021, 192(3): 93-98.
LI Mengwei. 基于 CATIA Rapid modeling of unconventional FPSO based on CATIA[J]. Ship & Boat, 2021, 192(3): 93-98.
[9] 杨俊生. 有限元分析网格单元的选用原则[J]. 河南科技, 2020(17): 35-37
[10] 王立军, 谢永和. 克令吊底座强度有限元分析及结构优化[J]. 浙江海洋学院学报(自然科学版), 2007, 26(1): 91-94.
WANG Lijun, XIE Yonghe. The FEM analysis and optimum of the strength of crane’s pedestal[J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(1): 91-94.
[11] 中国船级社. 船舶与海上设施起重设备规范[S]. 2007.
[12] 陈誉, 赵宪忠. 平面KT型圆钢管搭接节点有限元参数分析与承载力计算[J]. 建筑结构学报, 2011, 32(4): 134-141.