牵缆浮体在浮力驱动上浮过程中与旋涡的相互作用而引发的舞动是一类典型的非定常涡流与浮体的强耦合作用问题。采用雷诺平均方程求解重叠网格并与悬链线模型相结合,建立水下航行器在尾流中释放牵缆球形浮标的数值模拟模型。模拟了因航行器航行攻角造成的发放尾涡强度、放缆速度造成的牵缆对浮体的束缚效应等形成的旋涡对浮体运动的频谱效应。利用CFD软件,通过控制变量法对放缆速度和攻角对旋涡的影响进行分析,揭示了放缆速度和攻角变化对浮体周围旋涡的影响。
A typical class of unsteady vortex and float strong coupling interaction problems is the gallop induced by the interaction of a towed float with a vortex during buoyancy driven surfacing. By solving the Reynolds mean equation for the overset mesh and combining it with the catenary model, a numerical simulation method for the release of a towed spherical buoy by an underwater vehicle in the wake is established. Simulated are the spectral effects of the vortex on the motion of the float caused by the strength of the release wake vortex caused by the angle of attack and the binding effect of the towline on the float caused by the release speed. The control variable method was used to examine the effects of release speed and angle of attack on the vortex, revealing the effects of changes in release speed and angle of attack on the vortex around the float.
2024,46(21): 25-32 收稿日期:2024-1-17
DOI:10.3404/j.issn.1672-7649.2024.21.005
分类号:U661.1
基金项目:国家自然科学基金资助项目(51709133)
作者简介:吴斌(1999-),男,硕士,研究方向为船舶流体力学的计算
参考文献:
[1] SAEIDINEZHAD A , DEHGHAN A A , MANSHADI M D . Nose shape effect on the visualized flow field around an axisymmetric body of revolution at incidence[J]. Journal of Visualization, 2014. 12(2): 121–135.
[2] HSIEH T. Three-dimensional separated flow structure over a cylinder with a hemispherical cap[J]. Journal of Fluid Mechanics, 2006, 324(1): 83-108.
[3] JOHANSSON P B V , GEORGE W K . The far downstream evolution of the high-Reynolds-number axisymmetric wake behind a disk. Part 2. Slice proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2006, 555: 387–408.
[4] CROW S C. Stability theory for a pair of trailing vortices[J]. A IA A Journal, 1970, 8(12): 2172-2179.
[5] FABRE D, JACQUIN L. Stability of a four-vortex aircraft wake model[J]. Physics of Fluids, 2000, 12(10): 2438-2443.
[6] ASHOK A, SMITS A. The turbulent wake of a submarine model at varying pitch and yaw angle[C]//APS Division of Fluid Dynamics Meeting Abstracts. APS, 2012.
[7] LIU Y, YANG W C, YANG J M. A visualization study of the near-wall behaviors of an oblique plate at different angles of attack[J]. Journal of Visualization, 2011, 14(2): 141–148.
[8] 王志博. 拖曳系统回转运动中的冲击特性[J]. 舰船科学技术, 2019, 41(13): 49-54.
WANG Zhibo. Impact characteristics in the rotational motion of a towing system[J]. Ship Science and Technology, 2019, 41(13): 49-54.
[9] 王志博, 顾华, 侯德永, 等. 拖缆冲击张力和拖体运动的求解 [C]// 全国水动力学研讨会并周培源诞辰 110 周年纪念大会, 2012.
[10] MANSHADI D M, HEJRANFAR K, FARAJOLLAHI H A. Effect of vortex generators on hydrodynamic behavior of an underwater axisymmetric hull at high angles of attack[J]. Journal of Visualization, 2017, 20(3): 113-125.
[11] GOVARDHAN R, WILLIAMSON C H K. Vortex-induced motions of a tethered sphere, Journal of Wind[J] Engineering and Industrial Aerodynamics, 1997(69): 375–385.
[12] ESHBAL L, KRAKOVICH A, HOUT R V. Time resolved measurements of vortex-induced vibrations of a positively buoyant tethered sphere in uniform water flow[J]. Journal of Fluids and Structures, 2012(35): 185–199.
[13] KATO H, TAKAMURE K, UCHIYAMA T. Characteristics of the wake of a sphere with a uniaxial through hole in uniform flow[J]. The Proceedings of Mechanical Engineering Congress, Japan, 2021: 51–89.
[14] G DE NAYER, A. APOSTOLATOS J N W, et al. Numerical studies on the instantaneous fluid–structure interaction of an air-inflated flexible membrane in turbulent flow[J]. Journal of Fluids and Structures, 2018(82): 577–609.
[15] LIYES A, DJAFFAR S, ABDALLAH S B, et al. 3D vortex structure investigation using Large Eddy Simulation of flow around a rotary oscillating circular cylinder[J]. European Journal of Mechanics - B/Fluids, 2018(71): 113–125.
[16] 张羽, 倪佐涛, 赵飞达. 关于坐底式潜标的设计与布放回收[J]. 科技创新与生产力, 2018, 292(5): 44-47.
ZHANG Yu, NI Zuotao, ZHAO Feida. Design and launching and retrieval about bottom-supported subsurface buoy[J]. Technology Innovation and Productivity, 2018, 292(5): 44-47.
[17] 潘斌, 高捷, 陈小红, 等. 浮标系泊系统静力计算[J]. 重庆交通学院学报, 1997(1): 70-75.
PAN Bin, GAO Jie, CHEN Xiaohong, et al. Static calculation of buoy mooring fast[J]. Journal of Chongqing Jiaotong Institute, 1997(1): 70-75.
[18] 杨迪. 水下航行器布放与回收UUV时的水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[19] 温福详, 周赫雄, 赵晓磊, 等. 深海剖面浮标上浮运动能耗优化及控制策略[J]. 舰船科学技术, 2022, 44(4): 72–76+131.
WEN Fuxiang, ZHOU Hexiong, ZHAO Xiaolei, et al. Energy consumption optimization and control strategy for the upward movement of deep-sea profile buoys[J]. Ship Science and Technology, 2022, 44(4): 72–76+131.
[20] 王志博. 海洋拖曳系统动力学与设计[M]. 北京: 国防工业出版社, 2019.
[21] QU Y, WU Q, ZHAO X, et al. Numerical investigation of flow structures around the DARPA SUBMARINE model[J]. Ocean Engineering, 2021(239): 109866.