为了提高轮缘推进器的推进效率,考虑对来流进行预旋和整流作用,提出一种安装在导管前侧的一阶等差桨前定子式附体。基于CFD数值计算方法,对轮缘推进器和前置定子组合系统进行敞水性能数值模拟,其计算结果与常规轮缘推进器敞水性能数值结果对比表明,加装一阶等差桨前定子式附体组合系统的推进效率最高可达到3%的性能提升。
In order to improve the propulsive efficiency of the rim-driven thruster, a new type attachment of first-order equal difference stators proposed in this paper, which is installed at the front side of the conduit, considering the pre-swirling and rectification effects on the incoming flow. Based on the CFD numerical calculation method, the open-water performance numerical simulation of the combined system of rim-driven thruster and front stator is carried out, the numerical results of open-water performance is compared with the conventional rim-driven thruster and shows that the propulsive efficiency of the combined system with first-order equal difference stator can be improved up to 3%.
2024,46(21): 47-53 收稿日期:2024-1-25
DOI:10.3404/j.issn.1672-7649.2024.21.008
分类号:U664.3
基金项目:河南省交通运输厅科技项目(2022-6-2);国家自然科学基金资助项目(52101315)
作者简介:陈昊(1988-),男,硕士,研究方向为交通运输规划与管理
参考文献:
[1] 宋显成, 赵国平, 苑利维, 等. 轮缘推进器水动力性能影响因素数值研究[J]. 船舶工程, 2020, 42(7): 67-71+163.
SONG Xiancheng, ZHAO Guoping, YUAN Liwei, et al. Numerical study on the influencing factors of hydrodynamic performance of rim thruster[J]. Ship Engineering, 2020, 42(7): 67-71+163.
[2] ZHANG Q, JAIMAN R K, MA P, et al. Investigation on the performance of a ducted propeller in oblique flow[J]. Offshore Mech. Arctic Eng, 2020, 142(1).
[3] YAN Xinping, LIANG Xingxin, OUYANG Wu, et al. A review of progress and applications of ship shaft-less rim-driven thrusters[J]. Ocean Engineering, 2017, 144: 142-156.
[4] VARATICEANU B D, MINCIUNESCU P, NICOLESCU C, et al. Design and validation of a 2.5 kW electric naval propulsion system with rim driven propeller[C]//2017 Electric Vehicles International Conference (EV). IEEE, 2017.
[5] YANG Tao, LI Ziru, CHEN Keqiang, et al. Prediction of hydrodynamic performance for rim-driven thruster[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
[6] LIANG Xingxin, YAN Xinping, OUYANG Wu , et al. Experimental research on tribological and vibration performance of water-lubricated hydrodynamic thrust bearings used in marine shaft-less rim driven thrusters[J]. Wear, 2019, 426–427(A): 778–791.
[7] 罗晓园, 刘亮清, 谭琨. 基于流固耦合的轮缘推进器水动力性能和强度校核分析[J]. 中国舰船研究, 2020, 15(4): 153-158.
LUO Xiaoyuan, LIU Liangqing, TAN Kun. Hydrodynamic performance and strength calibration analysis of rim thruster based on fluid-solid coupling[J]. China Ship Research, 2020, 15(4): 153-158.
[8] GO J S, YOON H S, JUNG J H. Effects of a duct before a propeller on propulsion performance[J]. Ocean Engineering, 2017, 136(5): 54–66.
[9] HASHEM N, AMIN N. An experimental and CFD study on the effects of different pre-swirl ducts on propulsion performance of series 60 ship[J]. Ocean Engineering, 2019(2): 491–509.
[10] KLA. Calm water model tests with becker mewis duct for a 320k VLCC[R]. Bcckcr Marinc Systcms, 2016.
[11] 程宣恺. 带节能装置的船模自航试验数值模拟[J]. 船舶与海洋工程, 2015, 31(1): 25-30.
CHENG Xuankai. Numerical simulation of ship model self-propelled test with energy-saving device[J]. Ship and Ocean Engineering, 2015, 31(1): 25-30.
[12] 黄少锋, 徐杰. 带节能装置的船体伴流尺度效应研究[C]//全国水动力学研讨会, 2014.