本文对悬臂梁结构进行了模型数据参数化,利用Ansys Workbench对悬臂梁结构进行直接优化设计,建立以质量最小为最优目标的非线性多约束数学模型。通过计算和分析输入参数对优化目标的敏感性和响应(总变形和等效应力),确定最佳的优化方案。经过直接优化,该悬臂结构质量比原来减轻了47.8%,优化效果良好,达到了最初进行优化的目的,实现利用材料更经济的结果,为类似结构的轻量化设计提供了思路。本方法具有较好的可行性,可优化得到结构性能较好的悬臂结构几何布局方案,可为此类悬臂结构的轻量化优化设计提供技术支撑。
In the present paper, the cantilever beam structure is parameterized by model data, and the cantilever beam structure is directly optimized by Ansys Workbench. A nonlinear multi-constraint mathematical model with the best mass as the optimal target is established. By calculating and analyzing the sensitivity and responses (including total deformation and equivalent stress) of the input parameters to the optimization target, the optimal optimization scheme is determined. After direct optimization, the structural quality of cantilever beam is reduced by 47.8% compared with the original. The optimization effect is good, the conditions for initial optimization are achieved, the more economical results of the use of materials are realized, and the lightweight design of similar structures is provided with ideas. This method has good feasibility, can optimize the geometric layout scheme of cantilever beams with better structural performance, and can provide technical support for the lightweight optimized design of such cantilever beams.
2024,46(21): 54-57 收稿日期:2024-1-19
DOI:10.3404/j.issn.1672-7649.2024.21.009
分类号:TH164
基金项目:国家自然科学基金资助项目(11204158);现代制造质量工程湖北省重点实验室资助项目(KFJJ-2022008);湖北工业大学博士科研启动基金资助项目(XJ2021006201)
作者简介:柯轶铭(2001-),男,硕士研究生,研究方向为能源动力设备管理
参考文献:
[1] JIGAR L. P, PARTHIV B. R, LALWANI D I. Optimization of five stage cantilever beam design and three stage heat exchanger design using amended differential evolution algorithm[J]. Materials Today: Proceedings, 2020, 26: 1977-1981.
[2] 彭营豪, 王禹, 陈思远, 等. 舷台悬臂结构挠度等效计算方法[J]. 舰船科学技术, 2023, 45(15): 6-10.
PENG Yinghao, WANG Yu, CHEN Siyuan, et al. Research on equivalent calculation method for the deflection of gangway cantilever structure[J]. Ship Science And Technology, 2023, 45(15): 6-10.
[3] PAUL Mayencourt, CAITLIN Mueller. Hybrid analytical and computational optimization methodology for structural shaping: Material-efficient mass timber beams[J]. Engineering Structures, 2020, 215: 110532.
[4] SCHMIT L A. Structural optimization-some ideas and insights[M]. In: Atreke, et al (Eds). New Direction in Optimum Design. New York: Wiley, 1984.
[5] 李天箭, 丁晓红, 李郝林. 机床结构轻量化设计研究进展[J]. 机械工程学报, 2020, 56(21): 186-198.
LI Tianjian, DING Xiaohong, LI haoling. Research progress on lightweight design of machine tool structure[J]. Journal of Mechanical Engineering, 2020, 56(21): 186-198.
[6] 王川东, 唐宇, 殷贵刚, 等. 发动机安装车悬臂梁的设计与优化[J]. 机械, 2020, 47(2): 64-68.
WANG Chuandong, TANG Yu, YIN Guiguang, et al. Design and optimization of cantilever beam for engine installation Car[J]. Machinery, 2020, 47(2): 64-68.
[7] 贾连辉, 李晓科, 袁文征, 等. 基于拓扑优化和Kriging模型的前中盾结构轻量化设计[J]. 中国机械工程, 2022, 33(23): 2888-2897.
JIA Lianhui, LI Xiaoke, YUAN Wenzheng, et al. Lightweight design of front and middle shield structures based on topology optimization and kriging model[J]. China Mechanical Engineering, 2022, 33(23): 2888-2897.
[8] HAO Hua, WANG Jiawei, YAN Xingfei, et al. Experimental research and numerical analysis on mechanical behavior of lightweight-design precast bent caps with large cantilevers[J]. Structures, 2022, 40: 536-554.