为优化生物柴油/柴油船用发动机的综合性能,利用AVL-Fire软件构建混合燃料发动机燃烧室模型,将仿真值与台架试验值进行对比验证其准确性,并通过燃用不同比例的生物柴油确立其最佳掺混比;最后,采用正交试验设计安排5个发动机运行参数进行多参数优化匹配,将NO排放量和指示功率作为评价指标,权重分别设置为0.6和0.4,对试验结果进行模糊数学分析。结果表明:对发动机性能影响大小顺序为EGR率(a1)、进气压力(a2)、进气温度(a3)、喷油提前角(a4)、喷油孔直径(a5);最优参数组合为:生物柴油掺混比30%、a1=12.5%、a2=0.173 MPa、a3=315.15 K、a4=18.6°CA、a5=0.32 mm,该组指示功率为52.7 kW与原机55 kW相比略低,NO排放量为5.37×10–5%相比于原机8.5×10–4%降低了94.7%。该方法可以在保证发动机动力性的前提下,大幅降低NO排放量。
In order to optimise the comprehensive performance of bio-diesel/diesel marine engine, firstly, the combustion chamber model of the blended fuel engine is constructed by using AVL-Fire software, and the simulation values are compared with the bench test values to verify its accuracy, and the optimal blending ratio is established by combusting different proportions of biodiesel; finally, orthogonal experimental design is used to arrange five engine operating parameters for multi-parameter optimisation and matching, and the NO emission and indicated power are set as evaluation indexes. Finally, the orthogonal test design was used to arrange five engine operating parameters to optimise the matching of multiple parameters, and the NO emission and indicated power were taken as the evaluation indexes, and the weights were set to 0.6 and 0.4, respectively, and the test results were analysed by fuzzy mathematics. The results showed that the order of influence on the engine performance was as follows: EGR rate (a1), intake pressure (a2), intake temperature (a3), injection advance angle (a4), and injection hole diameter (a5); the optimal parameter combinations were as follows: biodiesel blending ratio of 30%, a1=12.5%, a2=0.173 MPa, a3=315.15 K, a4=18.6°CA, a5 = 0.32 mm, the indicated power of the group was 52.7 kW which was slightly lower compared to the original 55 kW, and NO emission was 5.37×10–5% which was 94.7% lower compared to the original 8.5×10–4%. This method can significantly reduce NO emissions while maintaining engine power.
2024,46(21): 76-80 收稿日期:2024-1-10
DOI:10.3404/j.issn.1672-7649.2024.21.013
分类号:U664.121
基金项目:福建省自然科学基金资助项目(2022J01812,2021J01849);福建省教育厅科技项目(JAT210237)
作者简介:李品芳(1965-),男,副教授,研究方向为现代轮机管理工程
参考文献:
[1] 黄加亮, 张飞飞, 林航,等. 双卷流燃烧系统的双燃料发动机燃烧排放特性[J]. 集美大学学报(自然科学版), 2022, 27(6): 531-538.
[2] 宣熔, 牛梦达, 李品芳,等. 掺烧甲醇对船舶柴油机性能的影响[J]. 舰船科学技术, 2020, 42(21): 101-104+109.
XUAN Rong, NIU Mengda, LI Pinfang, et al. Effect of methanol blending on the performance of marine diesel engine[J]. Journal of Ship Science and Technology, 2020, 42(21): 101-104+109.
[3] 唐铭沂, 毛进, 杨捷波,等. 掺烧生物柴油结合相继增压技术对柴油机性能影响试验研究[J]. 舰船科学技术, 2023, 45(2): 129-134.
TANG Mingyi, MAO Jin, YANG Jiebo, et al. Experimental study on the effect of blended biodiesel combined with sequential boosting technology on diesel engine performance[J]. Ship Science and Technology, 2023, 45(2): 129-134.
[4] 周斌, 郑佳, 闫嘉楠,等. 柴油机掺烧生物柴油NOx和Soot排放控制研究[J]. 车用发动机, 2018(3): 31-36.
[5] 王彬彬, 高敬博, 杨捷波,等. 柴油机掺烧生物柴油结合进气道加湿技术及喷油提前角优化[J]. 舰船科学技术, 2022, 44(5): 88-92.
WANG Binbin, GAO Jingbo, YANG Jiebo, et al. Diesel engine blending biodiesel combined with inlet duct humidification technology and optimization of fuel injection advance angle[J]. Ship Science and Technology, 2022, 44(5): 88-92.
[6] SIEBERS D L, RAKOPOULOS C D, GIAKOUMIS E G, et al. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine[J]. Energy Conversion and Management, 2018, 51: 1989-1977.
[7] 贾崎. 柴油喷射策略对船用双燃料发动机燃烧和排放特性的影响[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[8] 韩宗英, 何昌升, 李井华,等. 钝体稳定射流火焰的火焰面模型数值研究[J]. 航空动力学报, 2020, 35(2): 337-347.
[9] 韩宇亮, 杨传雷, 王彬彬等. 掺氢燃烧和天然气替代率对柴油机的影响[J]. 舰船科学技术, 2023, 45(20): 127-134.
HAN Yuliang, YANG Chuanlei, WANG Binbin, et al. Effect of hydrogen combustion and natural gas substitution rate on diesel engine[J]. Ship Science and Technology, 2023, 45(20): 127-134.
[10] 杨柏枫, 王玉国, 殷长春, 等. 基于模糊分析的电控柴油机掺烧丁醇性能优化[J]. 大连海事大学学报, 2021, 47(3): 86-95+119.
[11] YANG S J. Some results of the fuzzy relation inequalities with addition–min composition[C]// in IEEE Transactions on Fuzzy Systems, 2018.