为研究在高温高速排气中使用低压喷雾冷却的传热传质特征,本文采用理论推导的方法建立了适用于高速排气中喷雾冷却快速计算模型,包括基于热力学理论的喷水量零维计算模型、基于喷雾学的液滴粒径和液滴受力零维计算模型、基于拉格朗日法的单液滴蒸发运动轨迹二维模型。基于这些模型,先分析采用柴油机海水泵低压供水喷雾的粒径,阐释高速排气弥补海水泵供水压力低的不足,减小液滴粒径的原理;然后分析排气管道内液滴的沉降风险,从液滴受力的角度说明在竖直管道内进行低压喷雾冷却的优越性;最后研究并比价了水平管道和竖直管道内低压喷雾单个液滴的运动蒸发轨迹,直观展示出液滴蒸发与运动关系的生命历程。 结果表明,在竖直管道内采用低压逆流喷雾是效果最佳的喷雾冷却方式。
In order to study the heat and mass transfer characteristics of low pressure spray cooling applied in high temperature and high speed exhaust, a rapid calculation model for spray cooling in high-speed exhaust was established via theoretical derivation. Including a zero-dimensional model of cooling water mass flow rate based on thermodynamic theory, a zero-dimensional model of droplet diameter and droplet force based on spray theory, and a two-dimension model of single droplet evaporation trajectory based on Lagrange method. Based on these models, the droplet size of low pressure spray supplied by diesel engine seawater pump was analyzed first, and the reason of reducing droplet size by taking advantage of high speed exhaust was explained. Then the droplet force was analyzed to estimate its separation probability, and proofed the advantageous of vertical pipe.Finally, the trajectories of single droplet in horizontal and vertical pipes were studied and optimized as evaporation considered. Results show that counter-current spray in vertical pipe is the best choice for low pressure spray cooling.
2024,46(21): 81-86 收稿日期:2024-1-30
DOI:10.3404/j.issn.1672-7649.2024.21.014
分类号:TK421.5
基金项目:国家自然科学基金青年基金资助项目(51906074)
作者简介:邓鹏(1987-),男,博士,高级工程师,研究方向为船舶系统工程
参考文献:
[1] 王建勋, 邓海华, 孙国仓. 针对遥感探潜的潜艇红外隐身技术评价方法[J]. 舰船电子工程, 2015, 35(10): 176-181.
WANG Jianxun, DENG Haihua, SUN Guocang. Efficiency evaluation system for infrared stealth accordingto remote sensing detection of submarine[J]. Ship Electronic Engineering, 2015, 35(10): 176-181.
[2] 王小川, 李雁飞, 贺国. 发动机排气系统两级喷雾降温的实验研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(4): 734-737.
WANG Xiaochun, LI Yanfei, HE Guo. Experrimental investigation of two-stage spray coolpng for engine exhaust system[J]. Journal of WuhanUniversity of Technology (Transportation Science and Engineering), 2015, 39(4): 734-737.
[3] 张顺凯, 顾文钰, 邬斌扬, 等. 防爆柴油机喷雾降温系统及其性能研究[J]. 内燃机工程, 2019, 40(1): 86-92.
ZHANG Shunkai, GU Wenyu, WU Binyang, et al. Research on structure and performance of a mine diesel engine with spray cooling system[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(1): 86-92.
[4] 谈立成, 张会生, 陆振华, 等. 船用燃气轮机红外抑制器的实验研究[J]. 上海交通大学学报, 2011, 45(6): 847-850.
TAN Licheng, ZHANG Huisheng, LU Zhenhua, et al. Experimental study on the infrared signature suppression device of a marine gas turbine exhaust system[J]. Journal of Shanghai Jiaotong University, 2011, 45(6): 847-850.
[5] 柳贡民, 黄亮, 张文平, 等. 船用柴油机排气冷却降噪装置性能仿真与实验研究[J]. 船舶工程, 2007, 29(3): 5-8.
LIU Gongmin, HUANG Liang, ZHANG Wenping, et al. Simulation and experiment on the characteristics of exhaust cooling and noise reduction equipment for marine diesel engine[J]. Ship Engineering, 2007, 29(3): 5-8.
[6] YE W, ZHANG Q R, XIE Y L, et al. Spray cooling for high temperature of exhaust gas using a nozzle array in a confined space: Analytical and empirical predictions on cooling capacity[J]. Applied Thermal Engineering, 2017, 127: 889-900.
[7] 袁江涛, 杨 立, 金仁喜, 等. 动力排气系统细水雾蒸发冷却试验研究[J]. 工程热物理学报, 2010, 31(3): 461-464.
YUAN Jiangtao, YANG Li, JIN Renxi, et al. Experimental study on water mist evaporative cooling in power machine exhaust system[J]. Journal of Engineering Thermophysics, 2010, 31(3): 461-464.
[8] 应宇辰, 赵建华. 柴油机排气系统喷雾冷却实验研究[J]. 节能技术与应用, 2019(4): 57-59.
YING Yuchen, ZHAO Jianhua. Experimental study on spray cooling of diesel engine exhaust system[J]. Energy Conservation, 2019(4): 57-59.
[9] 解茂昭, 贾明. 内燃机计算燃烧学(第三版)[M]. 北京: 科学出版社, 2016.
[10] 邓鹏. 定容弹内低温燃烧条件下乙醇柴油喷雾和燃烧特性实验研究[D]. 武汉: 华中科技大学, 2014.
[11] 沈维道, 童钧耕. 工程热力学(第四版)[M]. 北京: 高等教育出版社, 2007.
[12] 刘永长. 内燃机原理[M]. 武汉: 华中科技大学出版社, 2001.
[13] 仝凤英. 德国MTU16V396SE84GB31L柴油机淡水系统特点分析[J]. 船电技术, 1998(1): 45-49.
[14] ZHANG Y, HUANG R H, WANG Z W, et al. Experimental study on puffing characteristics of biodiesel-butanol droplet[J]. Fuel, 2017, 191: 454-462.