自主水下机器人(Autonomous Underwater Vehicle,AUV)可以在更深的海域中进行大范围的搜寻,加快深海搜救进度。为了解决AUV在复杂海洋环境下搜索过程中的问题,提高AUV在深海大范围搜寻主动声源过程中的搜寻效率,提出一种基于AUV的主动声源搜寻方法。将AUV搜寻主动声源的过程分为:疑似海域的大范围多目标搜索规划和实时引导搜寻2个阶段。本文主要研究在实时引导搜寻阶段采用基于改进差分进化算法进行动态引导规划,同时考虑引导中避免进入声源声影区导致声源信号丢失的影响,提高AUV声源搜寻效率。通过仿真结果,本文方法与传统的蝗虫优化算法以及粒子群算法对比,规划路径收敛速度更快,路径长度更短,满足AUV在深海大范围搜寻主动声源的搜寻任务效率需求。
Autonomous Underwater Vehicle (AUV) can conduct large-scale searches in deeper waters and speed up the progress of deep-sea search and rescue. In order to solve the problems of AUV in the search process in complex ocean environment and improve the search efficiency of AUV in the process of searching for active sound sources in a wide range of deep sea, an active sound source search method based on AUV is proposed. First, the process of AUV searching for active sound sources is divided into two stages: large-scale multi-target search planning in suspected sea areas and real-time guided search. This paper mainly studies the use of dynamic guidance planning based on the improved differential evolution algorithm in the real-time guidance search phase. At the same time, the impact of avoiding the loss of sound source signals caused by entering the sound shadow area of the sound source during guidance is considered to improve the efficiency of AUV sound source search. Through the simulation results, compared with the traditional locust optimization algorithm and particle swarm algorithm, the planned path converges faster and the path length is shorter, meeting the efficiency requirements of AUV searching for active sound sources in a wide range of deep sea areas.
2024,46(21): 113-118 收稿日期:2024-1-19
DOI:10.3404/j.issn.1672-7649.2024.21.020
分类号:TP24
基金项目:国家重点研发计划资助资助(2022YFC2806000)
作者简介:周仕昊(1998-),男,硕士研究生,研究方向为自主水下机器人技术、人工智能
参考文献:
[1] MUHAMMAD A M. The disappearance of MH370 and the search operations—The role of technology and emerging research challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(3): 6-16
[2] MDX MEDIA. F-35C crash on USS Carl Vinson leaked video-ramp strike accident, 24/1/2022-South Chinasea[EB/OL]. [2022-02-06]. https://www.youtube.com/watch?v=E6joqHFprAg.
[3] 于双宁. 基于水下无人潜器的黑匣子搜探航路规划[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[4] 李海森, 张阳, 朱建军,等. 失事目标水中搜寻技术发展现状及趋势[J]. 哈尔滨工程大学学报, 2023, 44(4): 546-553+579.
LI Haisen, ZHANG Yang, ZHU Jianjun, et al. Development status and trends of underwater search technology for wrecked targets[J]. Journal of Harbin Engineering University, 2023, 44(4): 546-553+579.
[5] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215–231.
HUANG Yan, LI Yan, YU Jiancheng, et al. State-of-the-Art and Development Trends of AUV Intelligence[J]. robot, 2020, 42(2): 215–231.
[6] 秦洪德, 孙延超. AUV关键技术与发展趋势[J]. 舰船科学技术, 2020, 42(23): 25–28.
QIN Hongde, SUN Yanchao. Analysis of the status and development of foreign AUV[J]. Ship Science and Technology, 2020, 42(23): 25–28.
[7] MAHMOUD ZADEH S, POWERS D M , YAZDANI A M, et al. Efficient AUV path planning in time-variant underwater environment using differential evolution algorithm[J]. Journal of Marine Science and Application, 2018, 17(4): 585–591.
[8] AN Yang, XU Gaofei, XU Chunhui, et al. Path planning for multipoint seabed survey mission using autonomous underwater vehicle[A]. OCEANS 2017 - Anchorage, 2017.
[9] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736-743.
ZHU Xixi, SUN Bing, ZHU Daqi. Three-dimensional dynamic path planning of AUV based on improved D* algorithm[J]. Control Engineering of China, 2021, 28(4): 736-743.
[10] 徐瑞莲, 周新志, 宁芊. 基于改进差分进化算法的多无人机航迹规划[J]. 火力与指挥控制, 2020, 45(1): 169-173+179.
[11] 张岳星, 王轶群, 李硕, 等. 基于海图和改进粒子群优化算法的AUV全局路径规划[J]. 机器人, 2020, 42(1): 120-128.
[12] 隋海琛. 深水黑匣子声信标快速搜寻定位方法研究[J]. 海洋测绘, 2019, 39(1): 79-82.
[13] 孙思博, 梁国龙, 明瑞和, 等. 一种基于广义二阶时延差的水下目标高精度定位方法[P]. 黑龙江省: CN112666519B, 2022-10-14.
[14] 郑福民, 段敏. 差分进化算法寻优下的自动垂直泊车路径规划方法[J]. 重庆理工大学学报(自然科学), 2022, 36(2): 44-51.
[15] MIAOHAN Z, YUHANG H, SHIYUN C, et al. A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments[J]. Engineering Applications of Artificial Intelligence, 2023, 125.
[16] 程泽新, 李东生, 高杨. 基于蝗虫算法的无人机三维航迹规划[J]. 飞行力学, 2019, 37(2): 46-50+55.
[17] 张琛良. 道路声屏障的声学特性研究与优化分析[D]. 贵阳: 贵州大学, 2020.