非均匀海水条件下,光学隐蔽深度模型(OCD_LAYER)建立在海水按照垂直线上分割成光学特性近似的相似层的基础之上,为了研究海洋内波条件下OCD_LAYER模型的适用性,根据对比度和两层流体内孤立波KDV方程,通过构造内波垂向结构,计算出位移均方根最大层为内波简化两层界面,并依此建立内波简化模型条件下光学隐蔽深度模型(OCD_KDV)。计算并分析了水下航行体表面反射比、海水衰减系数、观察天顶角、空气消光系数变化对内波简化模型条件下光学隐蔽深度模型的影响。结果表明,在最高探测概率下,特征尺度为36 m的水下航行体光学隐蔽深度在深远海海水中数值为36.79 m;在近海海水中数值为22.08 m;在沿岸海水中数值为11.04 m。实验结果为水下航行体光学隐蔽性提供了重要理论参考。
The Optical Concealed Depth Model (OCD_AYER) under non-uniform seawater conditions is established on the basis of dividing seawater into similar layers with optical properties approximated by vertical lines, in order to study OCD under ocean internal wave conditions_ The applicability of the LAYER model is based on contrast and the KDV equation of solitary waves in two layers of fluid. By constructing the vertical structure of internal waves, the maximum root mean square displacement layer is calculated as the simplified interface between the two layers of internal waves. Based on this, an optical concealment depth model (OCD_KDV) under the condition of simplified internal wave model is established. We calculated and analyzed the effects of underwater vehicle surface reflectance, seawater attenuation coefficient, observation and measurement height and zenith angle, and changes in air extinction coefficient on the optical concealment depth model under the simplified internal wave model conditions. The simulation results show that at the highest detection probability, the optical concealment depth of an underwater vehicle with a feature scale of 36 m is 36.79 m in deep sea water. In nearshore seawater, the value is 22.08 m. The value in coastal seawater is 11.04 m. The experimental results provide important reference for the optical concealment of underwater vehicles.
2024,46(21): 124-128 收稿日期:2024-1-25
DOI:10.3404/j.issn.1672-7649.2024.21.022
分类号:P733.3
作者简介:朱海荣(1988-),男,博士,讲师,研究方向为水下导航
参考文献:
[1] 何广华, 刘双, 王威. 密度分层对近水面航行潜体兴波阻力影响分析[J]. 哈尔滨工程大学学报, 2021, 42(8): 1125-1132.
[2] 李逸, 刘乐军, 高珊. 陆架斜坡对内孤立波的动力响应特性试验研究[J]. 海洋学报, 2021, 43(3) : 126-134.
[3] 杨刚, 陈标, 张本涛. 海洋内孤立波时空仿真分析[J]. 指挥控制与仿真, 2013, 35(4): 88-91.
[4] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测[J]. 物理学报, 2021, 70(16): 1687021-1687029.
[5] 马子轩, 李旭阳, 任志广. 大视场超紧凑探测光学系统设计[J]. 光学精密工程, 2020, 28(12): 2581-2587.
[6] 鲁啸天, 李峰, 肖变. 天基光学成像系统探测效能评价方法[J]. 光子学报, 2020, 49(12): 12120021-12120028.
[7] 朱海荣, 朱海, 蔡鹏, 等. 非均匀水体光学隐蔽深度模型建立与验证[J]. 光学学报, 2018, 38(10): 10010031–10010037.
[8] 朱海荣, 朱海, 蔡鹏, 等. 基于卫星遥感数据反演的光学隐蔽深度估计方法[J]. 激光与光电子学进展, 2018, 55(8): 0801041-0801045
[9] 朱海荣, 岳崴, 蔡鹏, 等. 水下无人机光学隐蔽深度模型建立与分析[J]. 兵器装备工程学报, 2020, 41(7): 187-191
[10] 朱海荣, 朱海, 刘金涛, 等. 水下航行器光学隐蔽深度测量系统[J]. 光学精密工程, 2015, 23(10): 2778-2784
[11] 朱海荣, 蔡鹏, 朱海, 等. 光学隐蔽深度测量系统的小型化设计[J]. 光学精密工程, 2016, 24(4): 726-731
[12] 陈标, 朱海荣. 机载超低频雷达探测海洋内波[J]. 海洋技术学报, 2006, 26(4): 401–404.
[13] LEE Z P, CARDER L. Absorption spectrum of phytoplankton pigments derived from hyper spectral remote-sensing reflectance[J]. Remote Sensing Environment, 2004, 89: 361-368.
[14] MCKEE D, CUNNINGHAM A. Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1): 305-316.
[15] 蔡熠, 刘延利, 戴聪明, 等. 卷云大气条件下目标与背景对比度模拟分析[J]. 光学学报, 2017, 37(8): 8-15