为了减少因海洋环境以及侧扫声呐工作机理等干扰所造成的声呐图像畸变,提出多源干扰下侧扫声呐图像复原的综合校正方法。针对辐射图像明暗区域差异明显、轮廓特征模糊等问题,基于双伽马函数和Retinex理论设计辐射均衡化和轮廓清晰化算子,实现了图像辐射校正;针对环境干扰及工作机理所造成的图像水柱区及图像压缩等问题,设计了海底点检测因子并通过获取实际平距实现斜距校正;针对AUV速度波动造成的图像异常拖拽和压缩等问题,基于经纬度设计航行速度,并通过校正比例系数复原图像块来实现速度校正。实验测试结果表明,相较于其它方法,文中综合校正方法不仅使校正图像具有均衡性好、特征轮廓清晰、水柱区基本消除和两舷图像衔接平滑的优点,而且SNR指标平均提升了6.060%、ENT指标平均降低了16.583%、SD指标平均降低了49.904%、ENL指标平均增加了78.347%,有效实现了侧扫声呐图像的复原。
In order to reduce sonar image distortion caused by interference from the marine environment and the working mechanism of side scan sonar, a comprehensive correction method for side-scan sonar image restoration under multi-source interference is proposed. In order to solve the problems of obvious differences between light and dark areas of radiation images and blurred contour features, radiation equalization and contour clearing operators were designed based on the double gamma function and Retinex theory to achieve image radiation correction; In order to solve the problems of image water column area and image compression caused by environmental interference and working mechanism, the seabed point detection factor was designed and the slant distance correction was realized by obtaining the actual horizontal distance; In order to solve the problems of abnormal image dragging and compression caused by AUV speed fluctuation, the navigation speed was designed based on longitude and latitude, and the speed correction was achieved by restoring the image blocks by correcting the scale coefficient. Experimental test results show that compared with other methods, the comprehensive correction method in this article not only makes the corrected image have the advantages of good balance, clear feature contours, basic elimination of water column areas and smooth connection of images on both sides, but also improves the SNR index by an average of 6.060%. The ENT index decreased by 16.583% on average, the SD index decreased by 49.904% on average, and the ENL index increased by 78.347% on average, effectively achieving the restoration of side scan sonar images.
2024,46(21): 129-137 收稿日期:2024-1-24
DOI:10.3404/j.issn.1672-7649.2024.21.023
分类号:U666
基金项目:工信部高技术船舶资助项目([2019]360);张家港市产业链创新产品攻关计划资助项目(ZKC2206);张家港市产学研预研资金资助项目(ZKYY2253)
作者简介:张亮(1997-),男,硕士研究生,研究方向为仿生智能、机器人自主导航等
参考文献:
[1] LIU J, PANG Y, YAN L, et al. An Image quality improvement method in side scan sonar based on deconvolution[J]. Remote Sensing, 2023, 15(20): 4908-4927.
[2] 林海文, 蚁群川, 方杰. 几种探测方法在海洋地形测绘中的应用[J]. 测绘与空间地理信息, 2023, 46(6): 188-190.
[3] SMITH L, STARK N, JABER R. Relating side scan sonar backscatter data to geotechnical properties for the investigation of surficial seabed sediments[J]. Geo-Marine Letters, 2023, 43(5): 1-9.
[4] OJO P E, IGBOKWE J I, OLIHA A O, et al. Assessment and characterization of woji creek riverbed in port harcourt rivers state nigeria utilizing side scan sonar technology[J]. Journal of Engineering Research and Reports, 2023, 25(11): 31-38.
[5] MENG X, XU W, SHEN B, et al. A high–efficiency side scan sonar simulator for high–speed seabed mapping[J]. Sensors, 2023, 23(6): 3083-3102.
[6] WANG X J, TANG C. Design and implementation of underwater detection and underwater acoustic countermeasures in naval combat simulation based on GBB technology[J]. Command Control and Simulation, 2020, 42(2): 100-104.
[7] ZIEJA M, WAWRZY W, TOMASZEWSKA J, et al. A method for the interpretation of sonar data recorded during autonomous underwater vehicle missions[J]. Polish Maritime Research, 2022, 29(3): 176-186.
[8] 严俊, 赵建虎, 孟俊霞, 等. 一种顾及辐射畸变的多波束与侧扫声呐通用海底底质分类方法[J]. 哈尔滨工业大学学报, 2019, 51(5): 178-184.
YAN Jun, ZHAO Jianhu, MENG Junxia, et al. A universal seabed classification method of multibeam and sidescan sonar images in consideration of radiometric distortion[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 178-184.
[9] LAKSHMI M D, RAJ M V, MURUGAN S S, et al. Feature matching and assessment of similarity rate on geometrically distorted side scan sonar images[C]// Proceedings of 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits Photonics and Wireless Networks. Tiruchirappalli, India, 2019: 208-212.
[10] 王爱学, 张红梅, 王晓, 等. 侧扫声呐条带数据处理及其无缝成图[J]. 测绘地理信息, 2017, 42(1): 26-29.
[11] 焦俊俊. 侧扫声呐图像预处理与拼接技术研究[D]. 大连: 大连海事大学, 2020.
[12] PAVIN A, KHODORENKO M. Automatic brightness correction method for side scan sonar echograms[C]// Proceedings of 2022 International Conference on Ocean Studies. Vladivostok, Russian Federation, 2022: 91-95.
[13] PENG C Y, FAN S S, CHENG X, et al. An improved side scan sonar image processing framework for autonomous underwater vehicle navigation[C]// Proceedings of the 15th International Conference on Underwater Networks & Systems. New York, USA, 2021: 1-5.
[14] SAZZAD T M S, HASAN M Z, MOHAMMED F, et al. Gamma encoding on image processing considering human visualization analysis and comparison[J]. Computer Science & Engineering, 2012, 4(12): 1868-1873.
[15] MUTHURAMAN D L , SANTHANAM S M. Contrast improvement on side scan sonar images using retinex based edge preserved technique[J]. Marine Geophysical Research, 2022, 43(2): 1-19.
[16] YE X, YANG H, JIA Y, et al. Geometric correction method of side scan sonar image[C]// Proceedings of OCEANS 2019. Marseille, France, 2019: 1-7.
[17] 赵建虎, 张红梅, 吴猛. 一种基于常梯度模板插值的声线跟踪算法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 71-78.